【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為,過(guò)的直線與橢圓交于兩點(diǎn),且的周長(zhǎng)為
(1)求橢圓的方程;
(2)若直線與橢圓分別交于兩點(diǎn),且,試問(wèn)點(diǎn)到直線的距離是否為定值,證明你的結(jié)論.
【答案】(1);(2)為定值,證明見解析
【解析】
(1)由周長(zhǎng)可求得,利用離心率求得,從而,從而得到橢圓方程;(2)直線方程與橢圓方程聯(lián)立,可得韋達(dá)定理的形式;利用垂直關(guān)系可構(gòu)造方程,代入韋達(dá)定理整理可得;利用點(diǎn)到直線距離公式表示出所求距離,化簡(jiǎn)可得結(jié)果.
(1)由橢圓定義知:的周長(zhǎng)為:
由橢圓離心率: ,
橢圓的方程:
(2)由題意,直線斜率存在,直線的方程為:
設(shè),
聯(lián)立方程,消去得:
由已知,且,
由,即得:
即:
,整理得:,滿足
點(diǎn)到直線的距離:為定值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的有________(只填序號(hào))
①若直線與平面有無(wú)數(shù)個(gè)公共點(diǎn),則直線在平面內(nèi);
②若直線l上有無(wú)數(shù)個(gè)點(diǎn)不在平面α內(nèi),則l∥α;
③若兩條異面直線中的一條與一個(gè)平面平行,則另一條直線一定與該平面相交;
④若直線l與平面α平行,則l與平面α內(nèi)的直線平行或異面;
⑤若平面α∥平面β,直線aα,直線bβ,則直線a∥b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的口袋中裝有大小、形狀完全相同的個(gè)小球,將它們分別編號(hào)為,,,…,,甲、乙、丙三人從口袋中依次各抽出個(gè)小球.甲說(shuō):我抽到了編號(hào)為的小球,乙說(shuō):我抽到了編號(hào)為的小球,丙說(shuō):我沒(méi)有抽到編號(hào)為的小球.已知甲、乙、丙三人抽到的個(gè)小球的編號(hào)之和都相等,且甲、乙、丙三人的說(shuō)法都正確,則丙抽到的個(gè)小球的編號(hào)分別為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,且.點(diǎn)
是棱的中點(diǎn),平面與棱交于點(diǎn).
(1)求證:∥;
(2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的單調(diào)減函數(shù)是奇函數(shù),當(dāng)時(shí),.
(Ⅰ)求的值;
(Ⅱ)求的解析式;
(Ⅲ)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃購(gòu)買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.在購(gòu)進(jìn)機(jī)器時(shí),可以一次性額外購(gòu)買幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元.在機(jī)器使用期間,如果維修次數(shù)超過(guò)購(gòu)機(jī)時(shí)購(gòu)買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無(wú)需支付小費(fèi).現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)一次性購(gòu)買幾次維修服務(wù),為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
以這100臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率, 記表示1臺(tái)機(jī)器三年內(nèi)共需維修的次數(shù),表示購(gòu)買1臺(tái)機(jī)器的同時(shí)購(gòu)買的維修次數(shù).
(1)求的分布列;
(2)若要求,確定的最小值;
(3)以在維修上所需費(fèi)用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)面與側(cè)面都是菱形,, .
(1)證明: ;
(2)若三棱柱的體積為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中志愿者部有男志愿者6人,女志愿者4人,這些人要參加元旦聯(lián)歡會(huì)的服務(wù)工作. 從這些人中隨機(jī)抽取4人負(fù)責(zé)舞臺(tái)服務(wù)工作,另外6人負(fù)責(zé)會(huì)場(chǎng)服務(wù)工作.
(Ⅰ)設(shè)為事件:“負(fù)責(zé)會(huì)場(chǎng)服務(wù)工作的志愿者中包含女志愿者但不包含男志愿者”,求事件發(fā)生的概率.
(Ⅱ)設(shè)表示參加舞臺(tái)服務(wù)工作的女志愿者人數(shù),求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com