精英家教網 > 高中數學 > 題目詳情

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數超過購機時購買的維修服務次數,則每維修一次需支付維修服務費用500元,無需支付小費.現需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數,得下面統(tǒng)計表:

維修次數

8

9

10

11

12

頻數

10

20

30

30

10

以這100臺機器維修次數的頻率代替1臺機器維修次數發(fā)生的概率, 記表示1臺機器三年內共需維修的次數,表示購買1臺機器的同時購買的維修次數.

(1)求的分布列;

(2)若要求,確定的最小值;

(3)以在維修上所需費用的期望值為決策依據,在之中選其一,應選用哪個?

【答案】(1)見解析;(2)11;(3)10

【解析】分析:(1)根據統(tǒng)計表中的頻數,由古典概型概率公式求出各隨機變量的頻率,以頻率代替概率可得的分布列; (2)因為, , 所以的最小值為11;(3)求出當時,在維修上所需費用為元,求出的期望,當時,在維修上所需費用為元,求出的期望,比較兩數學期望的大小,即可的結果.

詳解1)由統(tǒng)計表并以頻率代替概率可得,的分布列為

8

9

10

11

12

0.1

0.2

0.3

0.3

0.1

(2)因為,

,

所以的最小值為11

(3)記當時,在維修上所需費用為元,則的分布列為

2400

2450

2500

3000

3500

0.1

0.2

0.3

0.3

0.1

所以 (元)

記當時,在維修上所需費用為元,則的分布列為

2600

2650

2700

2750

3250

0.1

0.2

0.3

0.3

0.1

所以 (元)

因為,所以應選擇

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數的一段圖象過點(0,1),如圖所示.

(1)求函數的表達式;

(2)將函數的圖象向右平移個單位,得函數的圖象,求的最大值,并求出此時自變量x的集合;

(3),求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】基于移動網絡技術的共享單車被稱為“新四大發(fā)明”之一,短時間內就風靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經營狀況,對公司最近6個月的市場占有率進行了統(tǒng)計,結果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代碼

1

2

3

4

5

6

11

13

16

15

20

21

(1)請用相關系數說明能否用線性回歸模型擬合與月份代碼之間的關系.如果能,請計算出關于的線性回歸方程,如果不能,請說明理由;

(2)根據調研數據,公司決定再采購一批單車擴大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數如下表:

車型 報廢年限

1年

2年

3年

4年

總計

10

30

40

20

100

15

40

35

10

100

經測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設每輛單車的使用壽命都是整數年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產生的利潤的估計值為決策依據,如果你是公司負責人,會選擇哪款車型?

參考數據:,.

參考公式:相關系數,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法:

①若集合,,則;

②定義在上的函數, 為奇函數,則必有;

③方程有兩個實根;

④存在,,使得.

其中說法正確的序號是( )

A.②③B.②④

C.①②③D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,離心率為,過的直線與橢圓交于兩點,且的周長為

1)求橢圓的方程;

2)若直線與橢圓分別交于兩點,且,試問點到直線的距離是否為定值,證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來,中美貿易摩擦不斷.特別是美國對我國華為的限制.盡管美國對華為極力封鎖,百般刁難,并不斷加大對各國的施壓,拉攏他們抵制華為5G,然而這并沒有讓華為卻步.華為在2018年不僅凈利潤創(chuàng)下記錄,海外增長同樣強勁.今年,我國華為某一企業(yè)為了進一步增加市場競爭力,計劃在2020年利用新技術生產某款新手機.通過市場分析,生產此款手機全年需投入固定成本250萬,每生產(千部)手機,需另投入成本萬元,且 ,由市場調研知,每部手機售價0.7萬元,且全年內生產的手機當年能全部銷售完.

)求出2020年的利潤(萬元)關于年產量(千部)的函數關系式,(利潤=銷售額—成本);

2020年產量為多少(千部)時,企業(yè)所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某超市在節(jié)日期間進行有獎促銷,凡在該超市購物滿元的顧客,將獲得一次摸獎機會,規(guī)則如下:一個袋子裝有只形狀和大小均相同的玻璃球,其中兩只是紅色,三只是綠色,顧客從袋子中一次摸出兩只球,若兩只球都是紅色,則獎勵元;共兩只球都是綠色,則獎勵元;若兩只球顏色不同,則不獎勵.

(1)求一名顧客在一次摸獎活動中獲得元的概率;

(2)記為兩名顧客參與該摸獎活動獲得的獎勵總數額,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解學生的身體素質情況,現從我校學生中隨機抽取10人進行體能測試,測試的分數(百分制)如莖葉圖所示.根據有關國家標準,成績不低于79分的為優(yōu)秀,將頻率視為概率.

(1)另從我校學生中任取3人進行測試,求至少有1人成績是“優(yōu)秀”的概率;

(2)從前文所指的這10人(成績見莖葉圖)中隨機選取3人,記 表示測試成績?yōu)椤皟?yōu)秀”的學生人數,求的分布列及期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知

(1)求函數的極值;

(2),對于任意,總有成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案