已知一個(gè)正四面體的俯視圖如圖所示,其中四邊形ABCD是邊長(zhǎng)為3
2
的正方形,則該正四面體的內(nèi)切球的表面積為(  )
A、6πB、54π
C、12πD、48π
考點(diǎn):球的體積和表面積,簡(jiǎn)單空間圖形的三視圖
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由正四面體的俯視圖是邊長(zhǎng)為2的正方形,所以此四面體一定可以放在棱長(zhǎng)為2的正方體中,求出正四面體的邊長(zhǎng),可得正四面體的內(nèi)切球的半徑,即可求出正四面體的內(nèi)切球的表面積.
解答: 解:∵正四面體的俯視圖是如圖所示的邊長(zhǎng)為3
2
正方形ABCD,
∴此四面體一定可以放在正方體中,
∴我們可以在正方體中尋找此四面體.
如圖所示,四面體ABCD滿足題意,
由題意可知,正方體的棱長(zhǎng)為3
2
,∴正四面體的邊長(zhǎng)為6,
∴正四面體的高為2
6

∴正四面體的內(nèi)切球的半徑為
6
2
,
∴正四面體的內(nèi)切球的表面積為4πR2=6π
故選:A.
點(diǎn)評(píng):本題的考點(diǎn)是由三視圖求幾何體的表面積,需要由三視圖判斷空間幾何體的結(jié)構(gòu)特征,并根據(jù)三視圖求出每個(gè)幾何體中幾何元素的長(zhǎng)度,代入對(duì)應(yīng)的表面積公式分別求解,考查了空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,已知直線l的極坐方程為ρsin(θ+
π
4
)=
2
+1,圓C的圓心(
2
π
4
),半徑為
2
,則直線l被圓C所截得的弦長(zhǎng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下課以后,教室里還剩下2位男同學(xué)和2位女同學(xué).若他們按順序走出教室,則第2位走的是男同學(xué)的概率是(  )
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在[a,b]上有兩個(gè)不同的零點(diǎn),則稱f(x)與g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為f(x)與g(x)的“關(guān)聯(lián)區(qū)間”.若f(x)=
1
3
x3-x2-x與g(x)=2x+b的“關(guān)聯(lián)區(qū)間”是[-3,0],則b的取值范圍是( 。
A、[-9,0]
B、[0,
5
3
]
C、[0,
5
3
D、[-9,
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在樣本的頻率分布直方圖中,共有5個(gè)小矩形,已知中間一個(gè)矩形的面積是所有五個(gè)矩形面積之和的
1
8
,且中間一組的頻數(shù)是10,則這個(gè)樣本容量為( 。
A、80B、50C、10D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,
AB
+
AD
AO
,則λ=( 。
A、2
B、
3
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一門高射炮射擊一次擊中目標(biāo)的概率是0.4,那么至少需要這樣的高射炮多少門同時(shí)對(duì)某一目標(biāo)射擊一次,才能使該目標(biāo)被擊中的概率超過(guò)96%(提供的數(shù)據(jù):lg2=0.30,lg3=0.48)(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角θ的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸正半軸重合,終邊在直線3x-y=0上,則
sin(
2
+θ)+2cos(π-θ)
sin(
π
2
-θ)-sin(π-θ)
等于( 。
A、-
3
2
B、
3
2
C、0
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=3
e1
-2
e2
,
b
=4
e1
-
e2
,其中
e1
=(1,0),
e2
=(0,1).
(1)求:
a
,
b

(2)求:|
a
+
b
|及
a
b
的夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案