(2013•青島一模)設(shè)全集U=R,集合M={x|y=lg(x2-1)},N={x|0<x<2},則N∩(?UM)=( 。
分析:由全集U=R,集合M={x|y=lg(x2-1)}={x|x<-1或x>1},先求出CUM,再由集合N能夠求出N∩(?UM).
解答:解:∵全集U=R,
集合M={x|y=lg(x2-1)}={x|x<-1或x>1},
∴CUM={x|-1≤x≤1},
∵集合N={x|0<x<2},
∴N∩(?UM)={x|0<x≤1}.
故選B.
點(diǎn)評(píng):本題考查集合的交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)下列函數(shù)中周期為π且為偶函數(shù)的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)“k=
2
”是“直線x-y+k=0與圓“x2+y2=1相切”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)函數(shù)y=21-x的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)已知x,y滿足約束條件
x2+y2≤4
x-y+2≥0
y≥0
,則目標(biāo)函數(shù)z=-2x+y的最大值是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)C滿足:△ABC的周長(zhǎng)為2+2
2
,記動(dòng)點(diǎn)C的軌跡為曲線W.
(Ⅰ)求W的方程;
(Ⅱ)曲線W上是否存在這樣的點(diǎn)P:它到直線x=-1的距離恰好等于它到點(diǎn)B的距離?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)設(shè)E曲線W上的一動(dòng)點(diǎn),M(0,m),(m>0),求E和M兩點(diǎn)之間的最大距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案