分析 (I)利用遞推式與等比數(shù)列的通項(xiàng)公式即可得出;
(II)利用“裂項(xiàng)求和”即可得出.
解答 解:(I)∵滿足${S_n}=2-({\frac{2}{n}+1}){a_n}({n∈{N^*}})$,
∴當(dāng)n=1時(shí),a1=2-(2+1)a1,解得a1=$\frac{1}{2}$.
當(dāng)n≥2時(shí),an=Sn-Sn-1=$2-(\frac{2}{n}+1){a}_{n}$-$[2-(\frac{2}{n-1}+1){a}_{n-1}]$,化為$\frac{{a}_{n}}{n}=\frac{1}{2}•\frac{{a}_{n-1}}{n-1}$.
∴數(shù)列$\{\frac{{a}_{n}}{n}\}$是等比數(shù)列,首項(xiàng)為$\frac{1}{2}$,公比為$\frac{1}{2}$.
∴$\frac{{a}_{n}}{n}$=$(\frac{1}{2})^{n}$.
∴${a}_{n}=\frac{n}{{2}^{n}}$.
(Ⅱ)${b_n}={2^{n-1}}{a_n}$=$\frac{n}{2}$.
∴$\frac{1}{_{n}_{n+2}}$=$\frac{4}{n(n+2)}$=$2(\frac{1}{n}-\frac{1}{n+2})$.
∴$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_2}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+2}}}}$=$2[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})+(\frac{1}{n}-\frac{1}{n+2})]$
=2$(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=3-$\frac{4n+6}{{n}^{2}+3n+2}$.
點(diǎn)評(píng) 本題考查了遞推式的應(yīng)用、等比數(shù)列的通項(xiàng)公式與“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4≤m≤2 | B. | m≤-4或m≥2 | C. | -2≤m≤4 | D. | m≤-2或m≥4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\sqrt{2},\sqrt{2}}$) | B. | (-$\sqrt{3},\sqrt{3}}$) | C. | (-∞,-$\sqrt{2}}$)∪(${\sqrt{2}$,+∞) | D. | (-∞,-$\sqrt{3}}$)∪(${\sqrt{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com