14.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow$)=5,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則向量$\overrightarrow{a}$與$\overrightarrow$夾角的正切值為$\sqrt{3}$.

分析 根據(jù)條件進(jìn)行向量數(shù)量積的運(yùn)算便可得出$4+2cos<\overrightarrow{a},\overrightarrow>=5$,從而得出cos<$\overrightarrow{a},\overrightarrow$>的值,進(jìn)而得出tan$<\overrightarrow{a},\overrightarrow>$的值.

解答 解:根據(jù)條件,$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)={\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow$=$4+2•1cos<\overrightarrow{a},\overrightarrow>=5$;
∴$cos<\overrightarrow{a},\overrightarrow>=\frac{1}{2}$;
∴$<\overrightarrow{a},\overrightarrow>=\frac{π}{3}$;
∴$tan<\overrightarrow{a},\overrightarrow>=tan\frac{π}{3}=\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 考查向量數(shù)量積的運(yùn)算及計(jì)算公式,向量夾角的概念及范圍,已知三角函數(shù)值求角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,已知曲線C上任意一點(diǎn)到點(diǎn)$(\frac{3}{2},0)$的距離與到直線$x=-\frac{3}{2}$的距離相等.
(1)求曲線C的方程;
(2)若曲線C上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4,線段AB的垂直平分線與x軸交于點(diǎn)C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.拋擲兩枚骰子,求
(1)點(diǎn)數(shù)之和是奇數(shù)的概率;
(2)點(diǎn)數(shù)之積是偶數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1)且當(dāng)x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)-log5x的零點(diǎn)個(gè)數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若拋物線y2=2px(P>0)的準(zhǔn)線經(jīng)過橢圓$\frac{x^2}{3}$+y2=1的一個(gè)焦點(diǎn),則p=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{{3}^{n}-1}{2}$,記bn=2(1+log3an) (n∈N*).
(Ⅰ)求數(shù)列{anbn}的前n項(xiàng)和Tn;
(Ⅱ)求證:對(duì)于任意的正整數(shù)n,都有$\frac{1+_{1}}{_{1}}$•$\frac{1+_{2}}{_{2}}$•…•$\frac{1+_{n}}{_{n}}$<$\sqrt{2n+1}$成立;
(Ⅲ)求證:對(duì)于任意的正整數(shù)n,都有($\frac{_{1}-1}{_{1}}$)2•($\frac{_{2}-1}{_{2}}$)2•…•($\frac{_{n}-1}{_{n}}$)2≥$\frac{1}{4n}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,拿一張矩形的紙對(duì)折后略微展開,豎立在桌面上,折痕與桌面的位置關(guān)系是垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)為F,過F作斜率為2的直線l,直線l與雙曲線的右支有且只有一個(gè)公共點(diǎn),則雙曲線的離心率范圍$(1,\sqrt{5}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.高一某班級(jí)在學(xué)校數(shù)學(xué)嘉年華活動(dòng)中推出了一款數(shù)學(xué)游戲,受到大家的一致追捧.游戲規(guī)則如下:游戲參與者連續(xù)拋擲一顆質(zhì)地均勻的骰子,記第i次得到的點(diǎn)數(shù)為xi,若存在正整數(shù)n,使得x1+x2+…+xn=6,則稱n為游戲參與者的幸運(yùn)數(shù)字.
(Ⅰ)求游戲參與者的幸運(yùn)數(shù)字為1的概率;
(Ⅱ)求游戲參與者的幸運(yùn)數(shù)字為2的概率.

查看答案和解析>>

同步練習(xí)冊答案