5.函數(shù)f(x)=ax|log2x|-1有兩個不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(1,10)B.(1,+∞)C.(0,1)D.(10,+∞)

分析 令f(x)=0得出|log2x|=$\frac{1}{{a}^{x}}$=($\frac{1}{a}$)x.分別作出兩個函數(shù)的圖象,根據(jù)函數(shù)圖象的交點(diǎn)個數(shù)進(jìn)行判斷.

解答 解:令f(x)=ax|log2x|-1=0得|log2x|=$\frac{1}{{a}^{x}}$=($\frac{1}{a}$)x
∵f(x)有兩個不同的零點(diǎn),∴y=|log2x|與y=($\frac{1}{a}$)x的函數(shù)圖象有兩個交點(diǎn).
(1)當(dāng)a>1時(shí),作出y=|log2x|與y=($\frac{1}{a}$)x的函數(shù)圖象如圖所示,

由圖象可知y=|log2x|與y=($\frac{1}{a}$)x的函數(shù)圖象有兩個交點(diǎn),符合題意.
(2)當(dāng)0<a<1時(shí),作出y=|log2x|與y=($\frac{1}{a}$)x的函數(shù)圖象如圖所示,

由圖象可知y=|log2x|與y=($\frac{1}{a}$)x的函數(shù)圖象有一個交點(diǎn),不符合題意.
綜上,a的取值范圍為(1,+∞),
故選:B.

點(diǎn)評 本題考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,基本初等函數(shù)的圖象,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=x+$\frac{1}{x}$+$\frac{x}{{x}^{2}+1}$(x>0)的最小值是$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)=log2$\frac{1+ax}{1-x}$是(-b,b)上的奇函數(shù)(a≠-1),求a=1,b∈(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點(diǎn)A(3,4),
(1)經(jīng)過點(diǎn)A,且在兩坐標(biāo)軸上截距相等的直線方程為4x-3y=0或x+y-7=0;
(2)經(jīng)過點(diǎn)A,且與兩坐標(biāo)軸圍成一個等腰直角三角形的直線方程為x-y+1=0或x+y-7=0;
(3)經(jīng)過點(diǎn)A,且在x軸上的截距是在y軸上的截距的2倍的直線方程為x+2y-11=0或4x-3y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,tanA+tanB-$\sqrt{3}$tanAtanB=-$\sqrt{3}$,且a,b恰好為一元二次方程x2-mx+8=0的兩根,則S△ABC=2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.給出下列結(jié)論:
①若$\overrightarrow{AD}$=$\overrightarrow{BC}$,則ABCD是平行四邊形;
②cos$\frac{2}{7}$π<sin$\frac{5}{7}$π<tan$\frac{2}{7}$π;
③若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$;
④若$\frac{\overrightarrow a}{{|{\overrightarrow a}|}}$=$\frac{\overrightarrow b}{{|{\overrightarrow b}|}}$,則$\overrightarrow a$=$\overrightarrow b$.
則以上正確結(jié)論的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,用6種不同的顏色把圖中A,B,C,D4塊區(qū)域分開,若相鄰區(qū)域不能涂同一種顏色,則涂色方法共有480種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.演繹推理“①三角函數(shù)是周期函數(shù);②y=tanx是三角函數(shù);③y=tanx是周期函數(shù)”中的小前提是( 。
A.B.C.D.①和②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.圓與兩平行線x+3y-5=0,x+3y-3=0相切,圓心在直線2x+y+1=0,則這個圓的方程為${({x+\frac{7}{5}})^2}+{({y-\frac{9}{5}})^2}=\frac{1}{10}$ (化標(biāo)準(zhǔn)式).

查看答案和解析>>

同步練習(xí)冊答案