分析 由條件利用兩角和的正切公式求得tanC=$\sqrt{3}$,可得C=$\frac{π}{3}$,再利用韋達(dá)定理求得ab=8,可得S△ABC=$\frac{1}{2}$•ab•sinC的值.
解答 解:△ABC中,∵tanA+tanB-$\sqrt{3}$tanAtanB=tan(A+B)(1-tanAtanB)-$\sqrt{3}$tanAtanB=-$\sqrt{3}$,
∴tan(A+B)=-$\sqrt{3}$=-tanC,∴tanC=$\sqrt{3}$,∴C=$\frac{π}{3}$.
又∵a,b恰好為一元二次方程x2-mx+8=0的兩根,∴ab=8,
∴S△ABC=$\frac{1}{2}$•ab•sinC=$\frac{1}{2}$•8•$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
故答案為:2$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查兩角和的正切公式的應(yīng)用,韋達(dá)定理,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,10) | B. | (1,+∞) | C. | (0,1) | D. | (10,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $-\frac{3}{4}$ | C. | $\frac{4}{3}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com