4.在等差數(shù)列{an}中,a7=12,則a2+a12的值是( 。
A.24B.48C.96D.無(wú)法確定

分析 直接由等差數(shù)列的性質(zhì)列式求解.

解答 解:在等差數(shù)列{an}中,a2+a12=2a7=24.
故選A.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,三棱錐A-BCD中,AB⊥平面BCD,CD⊥BD.
(1)求證:平面ACD⊥平面ABD;
(2)若M為AD中點(diǎn),AB=BD=1,三棱錐A-MBC的體積為$\frac{1}{12}$,求CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.三個(gè)數(shù)a=$\sqrt{0.31}$,b=log20.31,c=20.31之間的大小關(guān)系是(  )
A.a<c<bB.b<a<cC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.等差數(shù)列{an}的前m項(xiàng)的和是14,前2m項(xiàng)的和是62,則它的前3m項(xiàng)的和是( 。
A.124B.134C.144D.154

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在數(shù)列{an}中,a1=1,an+1=an+c(c為常數(shù),n∈N+,且a1,a2,a5成公比q≠1的等比數(shù)列.
(1)求c的值;
(2)數(shù)列{bn}的前n項(xiàng)和為Sn且滿足:an•an+1•bn=1,求證:$\frac{1}{3}$≤Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知等差數(shù)列{an}的公差d>1,前10項(xiàng)和S10=100,{bn}為等比數(shù)列,公比為q,且q=d,b1=a1,b2=2.
(1)求an和bn;
(2)設(shè)cn=$\frac{{{a_n}-2}}{b_n}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知{a,b,c}={0,1,2},且下列三個(gè)關(guān)系:a≠2,b=2,c≠0只有一個(gè)正確,則100c+10b+a=102.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列函數(shù)中為偶函數(shù)的是( 。
A.y=x2-2xB.y=|lgx|C.y=3x+3-xD.y=$\frac{x}{{2}^{x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=x2-2x,g(x)=2x+a,若對(duì)于任意x1∈[-1,2],均存在x2∈[-1,2],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( 。
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-1,2]D.[3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案