2.已知函數(shù)f(x)=x2-2x,g(x)=2x+a,若對于任意x1∈[-1,2],均存在x2∈[-1,2],使得f(x1)=g(x2),則實數(shù)a的取值范圍是( 。
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-1,2]D.[3,+∞)

分析 由任意的x1∈[-1,2],都存在x2∈[-1,2],使得g(x2)=f(x1),可得f(x)=x2-2x在x1∈[-1,2]的值域為g(x)=ax+2在x2∈[-1,2]的值域的子集,構(gòu)造關(guān)于a的不等式組,可得結(jié)論.

解答 解:當(dāng)x1∈[-1,2]時,由f(x)=x2-2x得,
f(x1)∈[-1,3],
又∵任意的x1∈[-1,2],都存在x2∈[-1,2],使得g(x2)=f(x1),
∴當(dāng)x2∈[-1,2]時,g(x2)?[-1,3],
函數(shù)g(x)=2x+a,g(x2)∈[a-2,4+a].
$\left\{\begin{array}{l}{-1≥a-2}\\{4+a≥3}\end{array}\right.$,解得a∈[-1,1].
實數(shù)a的取值范圍是[-1,1].
故選:A.

點評 本題考查的知識點是二次函數(shù)在閉區(qū)間上的最值,其中根據(jù)已知分析出“g(x)=ax+2在x2∈[-1,2]的值域與f(x)=x2-2x在x1∈[-1,2]的值域的子集關(guān)系”是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等差數(shù)列{an}中,a7=12,則a2+a12的值是( 。
A.24B.48C.96D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對角線A1C1上的兩個不同的動點(包括端點A1,C1).給出以下四個結(jié)論:
①存在P,Q兩點,使BP⊥DQ;
②存在P,Q兩點,使BP,DQ與直線B1C都成45°的角;
③若PQ=1,則四面體BDPQ的體積一定是定值;
④若PQ=1,則四面體BDPQ在該正方體六個面上的正投影的面積之和為定值.
以上各結(jié)論中,正確結(jié)論的個數(shù)是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.一個水平放置的三角形的面積是$\frac{\sqrt{6}}{2}$,則其直觀圖面積為(  )
A.$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}的公差大于零,且a2、a4是方程x2-18x+65=0的兩個根;各項均為正數(shù)的等比數(shù)列{bn}的前n項和為Sn,且滿足b3=a3,S3=13.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)若數(shù)列{cn}滿足cn=$\left\{\begin{array}{l}{{a}_{n},n≤6}\\{_{n},n>6}\end{array}\right.$,求數(shù)列的前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,且PA=3,設(shè)G為PB中點,點F在線段PD上且PF=2FD.
(1)求點G到ACF的距離;
(2)在線段PC上是否存在點E,使得BE∥面ACF,若存在,確定點E的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$上求一點M,使點M到直線x+2y-10=0的距離最小,則點M的坐標(biāo)為$(\frac{9}{5},\frac{8}{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=a3-x+1,(a>0且a≠1),則函數(shù)f(x)的圖象恒過定點(3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如圖:觀察圖形,回答下列問題:

(1)79.5~89.5這一組的頻數(shù)、頻率分別是多少?
(2)樣本的眾數(shù)、中位數(shù)的估計值分別是多少?(保留小數(shù)點后三位)
(3)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).

查看答案和解析>>

同步練習(xí)冊答案