6.設(shè)P為曲線C1:$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{9}$=1的任意一點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ-2sinθ)=15,則點(diǎn)P到直線l的距離的最小值$\sqrt{5}$.

分析 直線l的極坐標(biāo)方程為ρ(cosθ-2sinθ)=15,利用互化公式可得直角坐標(biāo)方程.設(shè)P(8cosθ,3sinθ),利用點(diǎn)到直線的距離公式、和差公式與三角函數(shù)的單調(diào)性即可得出.

解答 解:直線l的極坐標(biāo)方程為ρ(cosθ-2sinθ)=15,可得直角坐標(biāo)方程:x-2y-15=0.
設(shè)P(8cosθ,3sinθ),則$\frac{|8cosθ-6sinθ-15|}{\sqrt{5}}$=$\frac{|10sin(θ-φ)+15|}{\sqrt{5}}$≥$\frac{5}{\sqrt{5}}$=$\sqrt{5}$,
當(dāng)且僅當(dāng)sin(θ-φ)=-1時(shí)取等號(hào).
則點(diǎn)P到直線l的距離的最小值是$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點(diǎn)評 本題考查了極坐標(biāo)化為直角坐標(biāo)、點(diǎn)到直線的距離公式、和差公式與三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=-x2+2ax+3a2
(1)當(dāng)a=-1時(shí),求不等式f(x)<-5的解集;
(2)若f(sinx)>0對任意實(shí)數(shù)x都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且cosB=$\frac{4}{5}$,b=3.
(1)若角A與390°的終邊相同,求a;
(2)當(dāng)△ABC的面積為3時(shí),求a2+c2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在多面體ABCDEFG中,四邊形ABCD與ADEF是邊長均為a的正方形,四邊形ABGF是直角梯形,AB⊥AF,且FA=2FG=4FH.
(1)求證:平面BCG⊥平面EHG;
(2)若a=4,求四棱錐G-BCEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知某商品的進(jìn)貨單價(jià)為1元/件,商戶甲往年以單價(jià)2元/件銷售該商品時(shí),年銷量為1萬件,今年擬下調(diào)銷售單價(jià)以提高銷量增加收益.據(jù)估算,若今年的實(shí)際銷售單價(jià)為x元/件(1≤x≤2),則新增的年銷量P=4(2-x)2(萬件).
(1)寫出今年商戶甲的收益f(x)(單位:萬元)與x的函數(shù)關(guān)系式;
(2)商戶甲今年采取降低單價(jià)提高銷量的營銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.將橢圓的標(biāo)準(zhǔn)方程$\frac{x^2}{9}+\frac{y^2}{4}$=1化為參數(shù)方程:
(1)設(shè)x=3cosφ,φ為參數(shù);
(2)設(shè)x=$\frac{3}{2}$t,t為參數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)p是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{9}$=1上一點(diǎn),雙曲線的一條漸近線方程為3x-2y=0,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點(diǎn),若|PF1|=5,則|PF2|=( 。
A.1或5B.1或9C.1D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右焦點(diǎn)為F,右頂點(diǎn)為A,一條漸近線方程為y=2$\sqrt{2}$x,且|AF|=2,則該雙曲線的實(shí)軸長為(  )
A.4B.2$\sqrt{3}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點(diǎn)P,Q為圓C:x2+y2=25上的任意兩點(diǎn),且|PQ|≤8,若PQ的中心點(diǎn)組成的區(qū)域?yàn)镸,在圓C內(nèi)任取一點(diǎn),則該點(diǎn)落在區(qū)域M內(nèi)的概率為$\frac{16}{25}$.

查看答案和解析>>

同步練習(xí)冊答案