設a=40.1,b=log30.1,c=0.50.1,則a,b,c的從大到小關系是
 
考點:對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應用
分析:利用指數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.
解答: 解:∵a=40.1>1,b=log30.1<0,0<c=0.50.1<1,
∴a>c>b.
故答案為:a>c>b.
點評:本題考查了指數(shù)與對數(shù)函數(shù)的單調(diào)性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知四個正數(shù)2,2,2x,4y的平均數(shù)是5,則
2
x
+
1
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某火車駛出A站5千米后,以60千米/小時的速度行駛了50分鐘,則在這段時間內(nèi)火車與A站的距離S(千米)與t(小時)之間的函數(shù)解析式是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
x
,(0<x≤2)
x2+6x,(-2≤x≤0)
的值域( 。
A、[-9,+∞)
B、[-9,0]∪(0,
1
2
]
C、[-9,0]∪[
1
2
,+∞)
D、[-8,0]∪[
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|-3<x<3},B={y|y=-x2+t},若A∩B=∅,則實數(shù)t的取值范圍是( 。
A、t≤-3B、t<3
C、t>3D、t≥3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A={x|x2+4x>0},B={x|a-1<x<a+1},其中x∈R,設U=R.
(1)求∁UA;
(2)如果B⊆∁UA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x+1)=2x-1,則f(-3)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a=
2
0
4-x2
dx,則
a
0
sinxdx=( 。
A、2πB、πC、2D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AB=AC,D、E分別是棱BC、CC1上的點(點D不在BC的端點處),且AD⊥DE,F(xiàn)為B1C1的中點.
(Ⅰ)求證:平面ADE⊥平面B1BCC1;
(Ⅱ)求證:A1F∥平面ADE.

查看答案和解析>>

同步練習冊答案