6.設(shè)A={x|x2+ax+a=0},其中a為常數(shù).
(1)若a=1,求A;
(2)a>0是A=∅的充分條件還是必要條件?說(shuō)明理由.

分析 (1)根據(jù)判別式即可求出,
(2)根據(jù)充分必要的定義即可判斷.

解答 解:(1)當(dāng)a=1時(shí),方程x2+x+1=0的△<0,故A={x|x2+x+1=0}=∅.   
(2)根據(jù)A=∅,可知方程x2+ax+a=0的△<0,即a2-4a<0,∴0<a<4,
故a>0是A=∅的必要而不充分條件.

點(diǎn)評(píng) 本題考查了方程根的判定方法,充分必要條件的定義,屬于容易題,運(yùn)算量小

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在三棱錐V-ABC中,平面VAV⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分別AB,VA的中點(diǎn).
(Ⅰ)求證:VB∥平面 M OC;
(Ⅱ)求三棱錐V-A BC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,將正方形ABCD沿對(duì)角線(xiàn)AC折成一個(gè)直二面角,則異面直線(xiàn)AB和CD所成的角是( 。
 
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)$f(x)=sin(\frac{π}{3}x+φ)(|φ|<\frac{π}{2})$的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),把f(x)的圖象向右平移3個(gè)單位長(zhǎng)度后,所得圖象對(duì)應(yīng)的函數(shù)解析式為( 。
A.y=sin($\frac{π}{3}$x+$\frac{π}{6}$)B.y=sin($\frac{π}{3}$x-$\frac{π}{6}$)C.y=cos($\frac{π}{3}$x+$\frac{π}{6}$)D.y=sin($\frac{π}{3}$x-$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知命題“p且q”是真命題,則下列命題:①p或q;②p且¬q;③¬p或q;④¬p且q;其中真命題的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.一條光線(xiàn)從點(diǎn)(-2,-3)射出,經(jīng)y軸反射后與圓(x+3)2+(y-2)2=1相切,則入射光線(xiàn)所在直線(xiàn)的斜率為(  )
A.$\frac{3}{2}$或$\frac{2}{3}$B.$\frac{4}{3}$或$\frac{3}{4}$C.$\frac{5}{3}或\frac{3}{5}$D.$\frac{5}{4}或\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.“函數(shù)f(x)=ax+3在(-1,2)上存在零點(diǎn)”是“3<a<4”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某市為了了解本市高中學(xué)生的漢字書(shū)寫(xiě)水平,在全市范圍內(nèi)隨機(jī)抽取了近千名學(xué)生參加漢字聽(tīng)寫(xiě)考試,將所得數(shù)據(jù)進(jìn)行分組,分組區(qū)間為:[50,60),[60,70),[70,80),[80,90),[90,100],并繪制出頻率分布直方圖,如圖所示.
(Ⅰ)求頻率分布直方圖中a的值;從該市隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生參加考試的成績(jī)低于90分的概率;
(Ⅱ)設(shè)A,B,C三名學(xué)生的考試成績(jī)?cè)趨^(qū)間[80,90)內(nèi),M,N兩名學(xué)生的考試成績(jī)?cè)趨^(qū)間[60,70)內(nèi),現(xiàn)從這5名學(xué)生中任選兩人參加座談會(huì),求學(xué)生M,N至少有一人被選中的概率;
(Ⅲ)試估計(jì)樣本的中位數(shù)與平均數(shù).
(注:將頻率視為相應(yīng)的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,外接圓半徑為1,且$\frac{tanA}{tanB}$=$\frac{2c-b}$,則△ABC面積的最大值為$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案