分析 (Ⅰ)由題設(shè)知:f(x)在[1,a]上單調(diào)遞減,則有$\left\{\begin{array}{l}f(1)=a\\ f(a)=1\end{array}\right.$,解得實(shí)數(shù)a的值;
(Ⅱ)若f(x)在區(qū)間(-∞,2]上是減函數(shù),則a≥2,結(jié)合函數(shù)的單調(diào)性,可得f(x)在區(qū)間[1,a+1]上的最小值和最大值;
(Ⅲ) 若f(x)在區(qū)間(1,3)上有零點(diǎn),則1<a<3,且函數(shù)的最小值不大于0,進(jìn)而得到答案.
解答 解:由題設(shè)知:函數(shù)化為f(x)=(x-a)2+5-a2,其對(duì)稱軸為x=a(a>1).…(1分)
(Ⅰ)由題設(shè)知:f(x)在[1,a]上單調(diào)遞減,
則有$\left\{\begin{array}{l}f(1)=a\\ f(a)=1\end{array}\right.$,
即$\left\{\begin{array}{l}6-2a=a\\ 5-{a^2}=1\end{array}\right.$…(3分)
∴a=2…(4分)
(Ⅱ) 由題設(shè)知:a≥2,則有a-1≥1=(a+1)-a;…(5分)
又f(x)在[1,a]上單調(diào)遞減,在[a,a+1]上單調(diào)遞增; …(6分)
∴$f{(x)_{min}}=f(a)=5-{a^2}$,f(x)max=f(1)=6-2a…(8分)
(Ⅲ)由題設(shè)知:當(dāng)a≥3時(shí),f(x)<f(1)≤0,則f(x)在區(qū)間(1,3)上無(wú)零點(diǎn); …(9分)
當(dāng)1<a<3時(shí),f(1)>0且f(x)在(1,a]上單調(diào)遞減,在[a,3)上單調(diào)遞增;…(10分)
∴$f{(x)_{min}}=f(a)=5-{a^2}≤0$,即$a≥\sqrt{5}$…(11分)
由上述知:$\sqrt{5}≤a<3$…(12分)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若點(diǎn)P在直線BC1上運(yùn)動(dòng)時(shí),三棱錐A-D1PC的體積不變 | |
B. | 若點(diǎn)P是平面A1B1C1D1上到點(diǎn)D和C1距離相等的點(diǎn),則P點(diǎn)的軌跡是過(guò)D1點(diǎn)的直線 | |
C. | 若點(diǎn)P在直線BC1上運(yùn)動(dòng)時(shí),直線AP與平面ACD1所成角的大小不變 | |
D. | 若點(diǎn)P在直線BC1上運(yùn)動(dòng)時(shí),二面角P-AD1-C的大小不變 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30 | B. | 45 | C. | 60 | D. | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | $4\sqrt{2}$ | C. | $6\sqrt{2}$ | D. | $8\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-1,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com