12.圓x2+y2-4x+6y-12=0上的點(diǎn)到直線3x+4y+k=0的距離的最小值大于2,則實(shí)數(shù)k的取值范圍是k<-29或k>41.

分析 將圓方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)與半徑r,利用點(diǎn)到直線的距離公式求出圓心到直線的距離d,由d-r求出最小值,可得不等式,即可得出結(jié)論.

解答 解:將圓方程化為標(biāo)準(zhǔn)方程得:(x-2)2+(y+3)2=25,
∴圓心(2,-3),半徑r=5,
∵圓心到直線3x+4y+k=0的距離d=$\frac{|6-12+k|}{5}$=$\frac{|k-6|}{5}$,
∴圓上的點(diǎn)到直線的最小值=$\frac{|k-6|}{5}$-5>2,
∴k<-29或k>41.
故答案為k<-29或k>41.

點(diǎn)評 此題考查了直線與圓的位置關(guān)系,涉及的知識有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,根據(jù)題意得出d+r為距離的最大值,d-r為距離的最小值是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.關(guān)于x的方程x2+2(m+1)x+2m+6=0有兩個實(shí)根,一個比2大,一個比2小,則實(shí)數(shù)m的范圍為m<-$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某公司2016年前三個月的利潤(單位:百萬元)如表:
月份123
利潤23.95.5
(1)求利潤y關(guān)于月份x的線性回歸方程;
(2)試用(1)中求得的回歸方程預(yù)測4月和5月的利潤;
(3)試用(1)中求得的回歸方程預(yù)測該公司2016年從幾月份開始利潤超過1000萬?
相關(guān)公式:b=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=2x-1+a,g(x)=bf(1-x),其中a,b∈R,若關(guān)于x的不等式f(x)≥g(x)的解的最小值為2,則實(shí)數(shù)a的取值范圍是a≤-2或a>-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.雙曲線$\frac{x^2}{4}$-$\frac{y^2}{5}$=1的焦點(diǎn)坐標(biāo)是(-3,0),(3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)y=f(x)定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2-3x+b,則f(-2)=( 。
A.-2B.2C.10D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.直線y=1與函數(shù)y=x2-2|x|+a的圖象有四個不同交點(diǎn),則實(shí)數(shù)a的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=x2-2x-1(-2≤x≤2)的值域?yàn)閇-2,7].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)f(x)=x2-2ax+5(a>1).
(Ⅰ)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(Ⅱ)若f(x)在區(qū)間(-∞,2]上是減函數(shù),求f(x)在區(qū)間[1,a+1]上的最小值和最大值;
(Ⅲ) 若f(x)在區(qū)間(1,3)上有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案