【題目】已知函數(shù),(其中,,)的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象上一個最高點為

1)求的解析式;

2)先把函數(shù)的圖象向左平移個單位長度,然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,試寫出函數(shù)的解析式.

3)在(2)的條件下,若存在,使得不等式成立,求實數(shù)的最小值.

【答案】(1);(2);(3).

【解析】

1)依題意知,由此可求得;又函數(shù)圖象上一個最高點為,可知,結(jié)合可求得,從而可得的解析式;

2)利用函數(shù)的圖象變換可求得函數(shù)的解析式;

3,則,,依題意知,,從而可求得實數(shù)的最小值.

1)∵,

,解得;

又函數(shù)圖象上一個最高點為,

,

,又,

,

2)把函數(shù)的圖象向左平移個單位長度,

得到的圖象,

然后再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),

得到函數(shù)的圖象,

3)∵,

,

依題意知,

,即實數(shù)的最小值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】一半徑為米的水輪如圖所示,水輪圓心距離水面米;已知水輪按逆時針做勻速轉(zhuǎn)動,每秒轉(zhuǎn)一圈,如果當水輪上點從水中浮現(xiàn)時(圖中點)開始計算時間.

1)以水輪所在平面與水面的交線為軸,以過點且與水面垂直的直線為軸,建立如圖所示的直角坐標系,試將點距離水面的高度(單位:米)表示為時間(單位:秒)的函數(shù);

2)在水輪轉(zhuǎn)動的任意一圈內(nèi),有多長時間點距水面的高度超過米?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖像相鄰對稱軸之間的距離是,若將的圖像向右移個單位,所得函數(shù)為奇函數(shù).

(1)求的解析式;

(2)若函數(shù)的零點為,;

(3)若對任意,有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所發(fā)現(xiàn),一種作物的年收獲量(單位:)與它“相近”作物的株數(shù)具有相關(guān)關(guān)系(所謂兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近作物的株數(shù)為時,該作物的年收獲量的相關(guān)數(shù)據(jù)如下:

(1)根據(jù)研究發(fā)現(xiàn),該作物的年收獲量可能和它“相近”作物的株數(shù)有以下兩種回歸方程:,利用統(tǒng)計知識,結(jié)合相關(guān)系數(shù)比較使用哪種回歸方程更合適;

(2)農(nóng)科所在如下圖所示的正方形地塊的每個格點(指縱、橫直線的交叉點)處都種了一株該作物,其中每個小正方形的面積為,若在所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學期望.(注:年收獲量以(1)中選擇的回歸方程計算所得數(shù)據(jù)為依據(jù)

參考公式:線性回歸方程為,其中,,

相關(guān)系數(shù);

參考數(shù)值:,,,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市交通管理部門為了解市民對機動車“單雙號限行”的態(tài)度,隨機采訪了100名市民,將他們的意見和是否擁有私家車的情況進行了統(tǒng)計,得到了如下的列聯(lián)表:

贊同限行

不贊同限行

合計

沒有私家車

15

有私家車

45

合計

100

已知在被采訪的100人中隨機抽取1人且抽到“贊同限行”者的概率是.

(1)請將上面的列聯(lián)表補充完整;

(2)根據(jù)上面的列聯(lián)表判斷能否在犯錯誤的概率不超過0.10的前提下認為“對限行的態(tài)度與是否擁有私家車有關(guān)”;

(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該市大量市民中,采用隨機抽樣方法每次抽取1名市民,抽取3次,記被抽取的3名市民中的“贊同限行”人數(shù)為.若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.

附:參考公式:,其中.

臨界值表:

0.15

0.10

0.05

0.025

0.10

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,在中,,的中點,四邊形是等腰梯形,,

(Ⅰ)求異面直線所成角的正弦值;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的矩形中, ,點邊上異于 兩點的動點,且 為線段的中點,現(xiàn)沿將四邊形折起,使得的夾角為,連接, .

(1)探究:在線段上是否存在一點,使得平面,若存在,說明點的位置,若不存在,請說明理由;

(2)求三棱錐的體積的最大值,并計算此時的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某教育主管部門到一所中學檢查高三年級學生的體質(zhì)健康情況,從中抽取了名學生的體質(zhì)測試成績,得到的頻率分布直方圖如圖1所示,樣本中前三組學生的原始成績按性別分類所得的莖葉圖如圖2所示.

(Ⅰ)求, , 的值;

(Ⅱ)估計該校高三學生體質(zhì)測試成績的平均數(shù)和中位數(shù);

(Ⅲ)若從成績在的學生中隨機抽取兩人重新進行測試,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,橢圓的中心在原點,在橢圓,且離心率為.

1求橢圓的標準方程;

2動直線交橢圓 兩點, 是橢圓上一點,直線的斜率為,且, 是線段上一點,圓的半徑為,且,求

查看答案和解析>>

同步練習冊答案