13.已知點(diǎn)O,A,B,F(xiàn)分別為橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心、左頂點(diǎn)、上頂點(diǎn)、右焦點(diǎn),過(guò)點(diǎn)F作OB的平行線,它與橢圓C在第一象限部分交于點(diǎn)P,若$\overrightarrow{AB}=λ\overrightarrow{OP}$,則實(shí)數(shù)λ的值為$\sqrt{2}$.

分析 由題意畫(huà)出圖形,求出$\overrightarrow{AB}、\overrightarrow{OP}$的坐標(biāo),代入$\overrightarrow{AB}=λ\overrightarrow{OP}$,結(jié)合隱含條件求得實(shí)數(shù)λ的值.

解答 解:如圖,

A(-a,0),B(0,b),F(xiàn)(c,0),
則P(c,$\frac{^{2}}{a}$),
∴$\overrightarrow{AB}=(a,b)$,$\overrightarrow{OP}=(c,\frac{^{2}}{a})$,
由$\overrightarrow{AB}=λ\overrightarrow{OP}$,得$\left\{\begin{array}{l}{a=λc}\\{b=λ\frac{^{2}}{a}}\end{array}\right.$,即b=c,
∴a2=b2+c2=2b2,$\frac{a}=\sqrt{2}$.
則$λ=\frac{a}=\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了平面向量在求解圓錐曲線問(wèn)題中的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列命題中正確的是(  )
A.若p∨q為真命題,則p∧q為真命題
B.若直線ax+y-1=0與直線x+ay+2=0平行,則a=1
C.若命題“?x∈R,x2+(a-1)x+1<0”是真命題,則實(shí)數(shù)a的取值范圍是a<-1或a>3
D.命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知點(diǎn)A(-3,0),B(3,0),動(dòng)點(diǎn)P滿足|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線C,求曲線C的方程;
(2)若點(diǎn)Q在直線l1:x+y+3=0上,直線l2經(jīng)過(guò)點(diǎn)Q且與曲線C只有一個(gè)公共點(diǎn)M,當(dāng)|QM|取最小值時(shí),求直線QM的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.定義在R上的函數(shù)f(x)=2ax+b,其中實(shí)數(shù)a,b∈(0,+∞),若對(duì)做任意的x∈[-$\frac{1}{2}$,$\frac{1}{2}$],不等式|f(x)|≤2恒成立,則當(dāng)a•b最大時(shí),f(2017)的值是4035.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.以點(diǎn)(2,-1)為圓心,且與直線x+y=7相切的圓的方程是(x-2)2+(y+1)2=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={-1,2,3},則集合A的非空真子集個(gè)數(shù)為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知定義域?yàn)镽的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函數(shù),f(1)=-$\frac{1}{3}$.
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.《九章算術(shù)》之后,人們學(xué)會(huì)了用數(shù)列的知識(shí)來(lái)解決問(wèn)題.公元5世紀(jì)中國(guó)古代內(nèi)容豐富的數(shù)學(xué)著作《張丘建算經(jīng)》卷上有題為:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問(wèn)日益幾何?”.利用這種思想設(shè)計(jì)的一個(gè)程序框圖如圖,若輸出的S值為九匹三丈(一匹=4丈,一丈=10尺),則框圖中d為( 。
A.$\frac{1}{2}$尺B.$\frac{8}{15}$尺C.$\frac{16}{31}$尺D.$\frac{16}{29}$尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.為了得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象,只需將函數(shù)y=sin2x的圖象上所有的點(diǎn)( 。
A.向左平移$\frac{π}{6}$個(gè)單位B.向左平移$\frac{π}{3}$個(gè)單位
C.向右平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{3}$個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案