1.定義在R上的函數(shù)f(x)=2ax+b,其中實(shí)數(shù)a,b∈(0,+∞),若對做任意的x∈[-$\frac{1}{2}$,$\frac{1}{2}$],不等式|f(x)|≤2恒成立,則當(dāng)a•b最大時(shí),f(2017)的值是4035.

分析 由題意,a+b≤2,可得2$\sqrt{ab}$≤2,ab≤1,當(dāng)且僅當(dāng)a=b=1時(shí)取等號,即可求出f(2017).

解答 解:由題意,a+b≤2,
∴2$\sqrt{ab}$≤2,∴ab≤1,當(dāng)且僅當(dāng)a=b=1時(shí)取等號,
∴f(2017)=2×2017+1=4035.
故答案為:4035.

點(diǎn)評 本題考查恒成立問題,考查基本不等式的運(yùn)用,考查學(xué)生分析解決問題的能力.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某學(xué)校為了調(diào)查大聲朗讀對學(xué)生的記憶是否有明顯的促進(jìn)作用,把200名經(jīng)常大聲朗讀的學(xué)生與另外200名經(jīng)常不大聲朗讀的學(xué)生的日常記憶情況作記載后進(jìn)行比較,提出假設(shè)H0:“經(jīng)常大聲朗讀對記憶沒有明顯的促進(jìn)作用”,利用2×2列聯(lián)表計(jì)算得K2≈3.918,經(jīng)查對臨界值表知P(K2≥3.841)≈0.05.根據(jù)比較結(jié)果,學(xué)校作出了以下的四個(gè)判斷:
p:有95%的把握認(rèn)為“經(jīng)常大聲朗讀對記憶有明顯的促進(jìn)作用”;
q:若某學(xué)生經(jīng)常大聲朗讀,那么他有95%的可能記憶力很好;
r:經(jīng)常大聲朗讀的學(xué)生中,有95%的學(xué)生的記憶有明顯的促進(jìn);
s:經(jīng)常大聲朗讀的學(xué)生中,只有5%的學(xué)生的記憶有明顯的促進(jìn).
則下列結(jié)論中,正確結(jié)論的序號是①④.(把你認(rèn)為正確的命題序號都填上)
①p∧非q、诜莗∧q  ③(非p∧非q)∧(r∨s)、埽╬∨非r)∧(非q∨s)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=3x+x,g(x)=x3+x,h(x)=log3x+x的零點(diǎn)依次為a,b,c,則(  )
A.c<b<aB.a<b<cC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上是減函數(shù)( 。
A.y=$\frac{1}{x}$B.y=x2C.y=($\frac{1}{2}$)xD.y=$\frac{1}{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在半徑為6cm的圓中,某扇形的弧所對的圓心角為$\frac{π}{4}$,則該扇形的周長是$12+\frac{3π}{2}$cm,該扇形的面積是$\frac{9π}{2}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若集合A={x||x-1|<2,x∈R},則A∩Z={0,1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點(diǎn)O,A,B,F(xiàn)分別為橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心、左頂點(diǎn)、上頂點(diǎn)、右焦點(diǎn),過點(diǎn)F作OB的平行線,它與橢圓C在第一象限部分交于點(diǎn)P,若$\overrightarrow{AB}=λ\overrightarrow{OP}$,則實(shí)數(shù)λ的值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.甲、乙兩位同學(xué)在5次考試中的數(shù)學(xué)成績用莖葉圖表示如圖,中間一列的數(shù)字表示數(shù)學(xué)成績的十位數(shù)字,兩邊的數(shù)字表示數(shù)學(xué)成績的個(gè)位數(shù)字,若甲、乙兩人的平均成績分別是$\overline{{x}_{1}}$,$\overline{{x}_{2}}$,則下列說法正確的是( 。
A.$\overline{{x}_{1}}<\overline{{x}_{2}}$,甲比乙成績穩(wěn)定B.$\overline{{x}_{1}}<\overline{{x}_{2}}$,乙比甲成績穩(wěn)定
C.$\overline{{x}_{1}}>\overline{{x}_{2}}$,甲比乙成績穩(wěn)定D.$\overline{{x}_{1}}>\overline{{x}_{2}}$,乙比甲成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+2$\overrightarrow$-2$\overrightarrow{c}$,$\overrightarrow{BC}$=3$\overrightarrow{a}$-3$\overrightarrow$+3$\overrightarrow{c}$,$\overrightarrow{CD}$=$\overrightarrow{a}$-$\overrightarrow$+$\overrightarrow{c}$,則直線AD與BC(  )
A.平行B.相交C.重合D.平行或重合

查看答案和解析>>

同步練習(xí)冊答案