14.某便攜式燈具廠的檢驗室,要檢查該廠生產(chǎn)的某一批次產(chǎn)品在使用時的安全性.檢查人員從中隨機(jī)抽取5件,通過對其加以不同的電壓(單位:伏特)測得相應(yīng)電流(單位:安培),數(shù)據(jù)見如表
產(chǎn)品編號
電壓(x)1015202530
電流(y)0.60.81.41.21.5
(1)試估計如對該批次某件產(chǎn)品加以110伏電壓,產(chǎn)生的電流是多少?
(2)依據(jù)其行業(yè)標(biāo)準(zhǔn),該類產(chǎn)品電阻在[18,22]內(nèi)為合格品,電阻的計算方法是電壓除以電流.現(xiàn)從上述5件產(chǎn)品中隨機(jī)抽2件,求這兩件產(chǎn)品中至少有一件是合格品的概率.
(附:回歸方程:$\hat y=bx+a$,b=$\frac{{\sum_{i=1}^n{({x_i}{y_i})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,a=$\overline y-b\overline x$,
參考數(shù)據(jù):$\overline{x}=20\;,\;\overline{y}=1.1\;\;,\;\sum_{i=1}^5{{x_i}{y_i}}=121\;\;,\;\;\sum_{i=1}^5{x_i^2}$=2250)

分析 (1)把數(shù)據(jù)代入相應(yīng)的公式,即可求出回歸方程;
(2)經(jīng)計算,產(chǎn)品編號為①③的是不合格品,其余為合格品,從中隨機(jī)抽2件共有如下10種情況,其中至少有一件是合格品有9種情況,根據(jù)概率公式計算即可.

解答 解:(1)b=$\frac{121-5×20}{2250-5×2{0}^{2}}$=0.044,
a=1.1-0.044×20=0.22,
所以回歸直線$\hat y=0.044x+0.22$,
故當(dāng)電壓加為110伏時,估計電流為5.06安培,
(2)由R=$\frac{U}{I}$可得,電阻分為為$\frac{10}{0.6}$$\frac{50}{3}$<18,$\frac{15}{0.8}$=$\frac{75}{4}$,$\frac{20}{1.4}$=$\frac{100}{7}$<18,$\frac{25}{1.2}$=$\frac{125}{6}$,$\frac{30}{1.5}$=20
經(jīng)計算,產(chǎn)品編號為①③的是不合格品,其余為合格品,
從中隨機(jī)抽2件共有如下10種情況:①②,①③,①④,①⑤,②③,②④,②⑤,③④,③⑤,④⑤,
其中至少有一件是合格品有9種情況,
故所求事件的概率為$\frac{9}{10}$.

點評 本題考查了回歸方程和古典概率的問題,關(guān)鍵是會運用公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.一個盒子里裝有大小均勻的6個小球,其中有紅色球4個,編號分別為1,2,3,4,白色球2個,編號分別為4,5,從盒子中任取3個小球(假設(shè)取到任何一個小球的可能性相同).
(1)求取出的3個小球中,含有編號為4的小球的概率;
(2)在取出的3個小球中,小球編號的最大值設(shè)為X,求隨機(jī)變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某學(xué)習(xí)小組有8個同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種競賽,要求每科均有1人參加,共有180種不同的選法.那么該小組中男、女同學(xué)各有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AD=DC=AA1=2,AB=4,E、F、G分別是棱AA1、AD、AB的中點.
(Ⅰ) 求證:EF⊥B1D1;
(Ⅱ) 求證:EF∥平面GCC1;
(Ⅲ) 求二面角B-GC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.己知復(fù)數(shù)z=(2-i)m2-$\frac{6m}{1-i}$-2(1+i),當(dāng)實數(shù)m取什么值時,復(fù)數(shù)z是:
(1)虛數(shù);
(2)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線x2+my2=1的虛軸長是實軸長的兩倍,則雙曲線的離心率e=( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{2}{{\sqrt{5}}}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),以C的右焦點F(c,0)為圓心,以a為半徑的圓與C的一條漸近線交于A,B兩點,若|AB|=$\frac{2}{3}$c,則雙曲線C的離心率為( 。
A.$\frac{{3\sqrt{26}}}{13}$B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在一個可任意放置、里面空間是正方體的容器中裝有一定量的水,有下列結(jié)論:
①水面可以是正三角形;
②水面可以是正六邊形;
③水面不可能是五邊形;
④當(dāng)水面是四邊形時,水的形狀是棱柱.
其中正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,且PA=AD=2,點M、N分別在PD、PC上,2PN=NC,PM=MD
(1)求證:PC⊥平面AMN;
(2)求四面體P-ABN的體積.

查看答案和解析>>

同步練習(xí)冊答案