A. | $\frac{5}{2}$ | B. | 8 | C. | $\frac{13}{2}$ | D. | $\frac{11}{2}$ |
分析 求出雙曲線的焦點坐標,得出拋物線方程,設點M在準線上的射影為D,則根據拋物線的定義可知|MF|=|MD|進而把問題轉化為求|MP|+|MD|取得最小,進而可推斷出當D,M,P三點共線時|MP|+|MD|最小,答案可得.
解答 解:(4,6)代入雙曲線C2:$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$,可得$\frac{16}{4}-\frac{36}{^{2}}=1$,∴b2=12,
∴c=4,∴F(4,0),
∵拋物線C1:y2=ax(a>0)的焦點與雙曲線C2:$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$的右焦點重合,
∴a=16,拋物線方程為y2=16x,
設點M在準線上的射影為D,則根據拋物線的定義可知|MF|=|MD|,
∴要求|MP|+|MF|取得最小值,即求|MP|+|MD|取得最小,
當D,M,P三點共線時|MP|+|MD|最小,為4+4=8.
故選:B.
點評 本題考查雙曲線的方程與性質,考查拋物線的定義、標準方程,以及簡單性質的應用,判斷當D,M,P三點共線時|PM|+|MD|最小,是解題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | a<b<c | B. | b<c<a | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -i | B. | i | C. | 1+i | D. | 1-i |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com