【題目】近年來,國資委.黨委高度重視扶貧開發(fā)工作,堅決貫徹落實中央扶貧工作重大決策部署,在各個貧困縣全力推進定點扶貧各項工作,取得了積極成效,某貧困縣為了響應國家精準扶貧的號召,特地承包了一塊土地,已知土地的使用面積以及相應的管理時間的關系如下表所示:

土地使用面積(單位:畝)

1

2

3

4

5

管理時間(單位:月)

8

10

13

25

24

并調查了某村300名村民參與管理的意愿,得到的部分數(shù)據(jù)如下表所示:

愿意參與管理

不愿意參與管理

男性村民

150

50

女性村民

50

1)求出相關系數(shù)的大小,并判斷管理時間與土地使用面積是否線性相關?

2)是否有99.9%的把握認為村民的性別與參與管理的意愿具有相關性?

3)若以該村的村民的性別與參與管理意愿的情況估計貧困縣的情況,則從該貧困縣中任取3人,記取到不愿意參與管理的男性村民的人數(shù)為,求的分布列及數(shù)學期望。

參考公式:

其中。臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

參考數(shù)據(jù):

【答案】(1)線性相關;(2)有;(3詳見解析.

【解析】

1)分別求出,,從而,,求出,從而得到管理時間與土地使用面積線性相關.

2)完善列聯(lián)表,求出,從而有的把握認為村民的性別與參與管理的意愿具有相關性.

3的可能取值為0,1,23,從該貧困縣中隨機抽取一名,取到不愿意參與管理的男性村民的概率為,由此能求出的分布列和數(shù)學期望.

解:依題意:

,

故管理時間與土地使用面積線性相關。

2)依題意,完善表格如下:

愿意參與管理

不愿意參與管理

總計

男性村民

150

50

200

女性村民

50

50

100

總計

200

100

300

計算得的觀測值為

故有99.9%的把握認為村民的性別與參與管理的意愿具有相關性。

3)依題意,的可能取值為0,1,2,3,從該貧困縣中隨機抽取一名,則取到不愿意參與管理的男性村民的概率為,

的分布列為

X

0

1

2

3

P

則數(shù)學期望為

(或由,得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的極坐標方程和曲線的直角坐標方程;

(2)若直線與曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“每天鍛煉一小時,健康工作五十年,幸福生活一輩子.”一科研單位為了解員工愛好運動是否與性別有關,從單位隨機抽取30名員工進行了問卷調查,得到了如下列聯(lián)表:

男性

女性

合計

愛好

10

不愛好

8

合計

30

已知在這30人中隨機抽取1人抽到愛好運動的員工的概率是.

(1)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結果,不需要寫求解過程),并據(jù)此資料分析能否有把握認為愛好運動與性別有關?

(2)若從這30人中的女性員工中隨機抽取2人參加一活動,記愛好運動的人數(shù)為,求的分布列、數(shù)學期望.參考數(shù)據(jù):

0.10

0.05

0.025

0.01

0.005

0.001

2.706

3.841

5.024/span>

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在浙江省和青海省各取面積大小一樣的A,B兩塊區(qū)域,分別調查人均可支配收入.獲得數(shù)據(jù)顯示,浙江省的A區(qū)域的人均可支配收入為35537元,青海省的B區(qū)域的人均可支配收入為24542.

1)能否得到這兩塊區(qū)域的人均可支配收入為(元)?

2)若“A區(qū)域為70萬人,B區(qū)域為30萬人,請問這兩塊區(qū)域的人均可支配收入為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,若函數(shù)有三個不同的零點,,(其中),則的取值范圍為__________

【答案】

【解析】如圖:

,,作出函數(shù)圖象如圖所示

,,作出函數(shù)圖象如圖所示

,由有三個不同的零點

,如圖

為滿足有三個零點,如圖可得

,

點睛:本題考查了函數(shù)零點問題,先由導數(shù)求出兩個函數(shù)的單調性,繼而畫出函數(shù)圖像,再由函數(shù)的零點個數(shù)確定參量取值范圍,將問題轉化為函數(shù)的兩根問題來求解,本題需要化歸轉化,函數(shù)的思想,零點問題等較為綜合,有很大難度。

型】填空
束】
17

【題目】已知等比數(shù)列的前項和為,且滿足.

(1)求數(shù)列的通項公式;

(2)若數(shù)列滿足,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{}的前項和為Sn,且Sn=n(n+1)(n∈N*).

(1)若數(shù)列滿足:,求數(shù)列的通項公式;

(2)令,求數(shù)列{}的前n項和Tn.

(3) ,(n為正整數(shù)),問是否存在非零整數(shù),使得對任意正整數(shù)n,都有若存在,求的值,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關系式,并根據(jù)你得到的關系式求出f(n)的表達式;

(3)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線的切線經過點,求的方程;

(2)若方程有兩個不相等的實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,是以為斜邊的直角三角形,,,,

1)若線段上有一個點,使得平面,請確定點的位置,并說明理由;

2)若平面平面,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案