【題目】科技改變生活,方便生活.共享單車的使用就是云服務的一種實踐,它是指企業(yè)與政府合作,為居民出行提供單車共享服務,它符合低碳出行理念,為解決城市出行的最后一公里提供了有力支撐,是共享經(jīng)濟的一種新形態(tài).某校學生社團為研究當?shù)厥褂霉蚕韱诬嚾巳旱哪挲g狀況,隨機抽取了當?shù)?/span>名使用共享單車的群眾作出調(diào)查,所得頻率分布直方圖如圖所示.

1)估計當?shù)毓蚕韱诬囀褂谜吣挲g的中位數(shù);

2)若按照分層抽樣從年齡在的人群中抽取人,再從這人中隨機抽取人調(diào)查單車使用體驗情況,記抽取的人中年齡在的人數(shù)為,求的分布列和數(shù)學期望.

【答案】1; 2)分布列見解析 期望為.

【解析】

1)由頻率和為可構造方程求得;根據(jù)頻率分布直方圖估計中位數(shù)的方法可計算求得中位數(shù);

2)根據(jù)分層抽樣原則確定年齡在的人數(shù),根據(jù)超幾何分布概率公式求得的取值所對應的概率,進而得到分布列;根據(jù)數(shù)學期望的計算公式計算可得期望.

1)由得:,

設中位數(shù)為,則位于區(qū)間,

,解得:,

∴估計當?shù)毓蚕韱诬囀褂谜吣挲g的中位數(shù)為.

2)抽取的人中有人年齡在內(nèi),人年齡在內(nèi).

的可能取值為,

;;,

的分布列為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,直線平面,且.

1)求二面角的大;

2)設E為棱的中點,在的內(nèi)部或邊上是否存在一點,使平面?若存在,求出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個關于圓錐曲線命題:

曲線為橢圓的充分不必要條件是;

②若雙曲線的離心率,且與橢圓有相同的焦點,則該雙曲線的漸近線方程為;

③拋物線的準線方程為;

④長為6的線段的端點分別在軸上移動,動點滿足,則動點的軌跡方程為

其中正確命題的序號為_________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】.求最大的整數(shù),使得集合S有k個互不相同的非空子集,具有性質(zhì):對這k個子集中任意兩個不同子集,若它們的交非空,則它們交集中的最小元素與這兩個子集中的最大元素均不相同.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù):

(I)時,求的最小值;

(II)對于任意的都存在唯一的使得,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明口袋中有3張10元,3張20元(因紙幣有編號認定每張紙幣不同),現(xiàn)從中掏出紙幣超過45元的方法有_______種;若小明每次掏出紙幣的概率是等可能的,不放回地掏出4張,剛好是50元的概率為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)探究函數(shù)上的單調(diào)性;

(2)若關于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,.

(Ⅰ)若,求的值;

(Ⅱ)令,把函數(shù)的圖象上每一點的橫坐標都縮小為原來的一半(縱坐標不變),再把所得圖象沿軸向右平移個單位,得到函數(shù)的圖象,試求函數(shù)的單調(diào)增區(qū)間及圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則不等式的解集為__________

查看答案和解析>>

同步練習冊答案