(本小題滿分12分) 如圖,在三棱錐中,,,點(diǎn)在平面內(nèi)的射影上。

(Ⅰ)求直線與平面所成的角的大。

(Ⅱ)求二面角的大小。

 

【答案】

(1)tan ;(2).

【解析】(1)連接OC. 由已知,所成的角

設(shè)AB的中點(diǎn)為D,連接PD、CD.

因?yàn)锳B=BC=CA,所以CDAB.

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912381978074877/SYS201207091238478588179919_DA.files/image005.png">等邊三角形,

不妨設(shè)PA=2,則OD=1,OP=, AB=4.

所以CD=2,OC=.

在Rttan.…………………………6分

(2)過D作DE于E,連接CE.       

     由已知可得,CD平面PAB.

據(jù)三垂線定理可知,CE⊥PA,

所以,.

由(1)知,DE=

在Rt△CDE中,tan

  …………………………………12分

[點(diǎn)評(píng)]本題旨在考查線面位置關(guān)系和二面角的基礎(chǔ)概念,重點(diǎn)考查思維能力和空間想象能力,進(jìn)一步深化對(duì)二面角的平面角的求解.求解二面角平面角的常規(guī)步驟:一找(尋找現(xiàn)成的二面角的平面角)、二作(若沒有找到現(xiàn)成的,需要引出輔助線作出二面角的平面角)、三求(有了二面角的平面角后,在三角形中求出該角相應(yīng)的三角函數(shù)值).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案