為了對(duì)某課題進(jìn)行研究,用分層抽樣方法從三所高校A,B,C的相關(guān)人員中,抽取若干人組成研究小組、有關(guān)數(shù)據(jù)見下表(單位:人)
高校相關(guān)人數(shù)抽取人數(shù)
A18X
B362
C54y
(1)求x,y;
(2)若從高校B、C抽取的人中選2人作專題發(fā)言,求所有可能情況有多少種?并用例舉法列出.
(3)在(2)的條件下,求這二人都來自高校C的概率.
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:(1)利用抽樣比相等直接求出求x,y;
(2)設(shè)從高校B,C中抽取的人為B1,B2,C1,C2,C3,直接列出所有可能情況.
(3)在(2)的條件下,求出這二人都來自高校C的情況有3種,利用古典概型求這二人都來自高校C的概率.
解答: 解:(1)由
18
x
=
36
2
=
54
y
得:x=1,y=3
(2)設(shè)從高校B,C中抽取的人為B1,B2,C1,C2,C3,則所有可能情況有10種,例舉如下:(B1,B2),(B1,C1),(B1,C2),(B1,C3),(B2,C1),(B2,C2),(B2,C3),(C1,C2),(C1,C3),(C2,C3
(3)在(2)的條件下,求這二人都來自高校C的情況有3種,則概率為P=
3
10
點(diǎn)評(píng):本題考查分層抽樣,古典概型概率的計(jì)算,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an>0(n∈N*),它的前n項(xiàng)和Sn.如果{an}是一個(gè)首項(xiàng)為a,公比為q(q>0)的等比數(shù)列,且Gn=a12+a22+a32+…+an2(n∈N*),求
lim
n→∞
Sn
Gn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正△ABC的邊長為1,那么△ABC的直觀圖△A′B′C′的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù).當(dāng)x≥0時(shí),f(x)=
5
16
x2(0≤x≤2)
(
1
2
)x+1(x>2)
若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A、(-
5
2
,-
9
4
)
B、(-
9
4
,-1)
C、(-
5
2
,-
9
4
)∪(-
9
4
,-1)
D、(-
5
2
,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
x
2x-1
在點(diǎn)(1,1)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={y|y=2-x},N={x|y=
x-1
},則M∩N等于( 。
A、{y|y>1}
B、{y|y≥1}
C、{y|y>0}
D、{y|y≥0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱臺(tái)的上下底面積分別是
3
與4
3
,它的側(cè)棱長為
3
,求它的高與斜高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log2m=2.013,log2n=1.013,則
n
m
等于( 。
A、2
B、
1
2
C、10
D、
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x不等式ax2+bx+c<0的解集為(-∞,-2)∪(-
1
2
,+∞)
,則關(guān)于x不等式cx2-bx+a>0的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案