(本小題滿分13分)
某種產(chǎn)品的廣告費支出與銷售額(單位:萬元)之間有如下對應數(shù)據(jù):


2
4
5
6
8

30
40
60
50
70
 
(Ⅰ)求回歸直線方程;
(Ⅱ)試預測廣告費支出為10萬元時,銷售額多大?
(Ⅲ)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預測值與實際值之差的
絕對值不超過5的概率。
(參考數(shù)據(jù):    ,
參考公式:回歸直線方程,其中 )

(Ⅰ)解:,
又已知 , 
于是可得:, 
因此,所求回歸直線方程為:
(Ⅱ)解: 根據(jù)上面求得的回歸直線方程,當廣告費支出為10萬元時,
 (萬元) 即這種產(chǎn)品的銷售收入大約為82. 5萬元. 


2
4
5
6
8

30
40
60
50
70

30.5
43.5
50
56.5
69.5
(Ⅲ)解:
基本事件:(30,40),(30,60),(30,50),(30,70),(40,60),(40,50),(40,70),
(60,50),(60,70),(50,70)共10個
兩組數(shù)據(jù)其預測值與實際值之差的絕對值都超過5:(60,50)
所以至少有一組數(shù)據(jù)其預測值與實際值之差的絕對值不超過5的概率為

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)為了了解某年段1000名學生的百米成績情況,隨機抽取了若干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組[13,14);第二組[14,15);……;第五組[17,18].按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前3個組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8.

⑴將頻率當作概率,請估計該年段學生中百米成績在[16,17)內的人數(shù);
⑵求調查中隨機抽取了多少個學生的百米成績;
⑶若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩位學生參加數(shù)學競賽培訓.現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次.記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫出甲、乙兩位學生成績的莖葉圖,指出學生乙成績的中位數(shù);
(2)現(xiàn)要從中選派一人參加數(shù)學競賽,從平均狀況和方差的角度考慮,你認為派哪位學生參加合適?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)為了了解某年段1000名學生的百米成績情況,隨機抽取了若
干學生的百米成績,成績全部介于13秒與18秒之間,將成績按如下方式分成五組:第一組
[13,14);第二組[14,15);……;第五組[17,18].按上述分組方法得到的頻率分布直方圖如
圖所示,已知圖中從左到右的前3個組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8.
(1)將頻率當作概率,請估計該年段學生中百米成績在[16,17)內的人數(shù);
(2)求調查中隨機抽取了多少個學生的百米成績;
(3)若從第一、五組中隨機取出兩個成績,求這兩個成績的差的絕對值大于1秒的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
假設關于某設備的使用年限x和所支出的維修費用y(萬元),有如下表的統(tǒng)計資料:
若由資料可知y對x呈線性相關關系,試求:
(1)線性回歸直線方程;
(2)估計使用年限為.10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日   期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
晝夜溫差
10
11
13
12
8
6
就診人數(shù)
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
⑴求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
⑵若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關于的線性回歸方程;
⑶若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性www.ks5u.com回歸方程是否理想?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本小題滿分12分)
為調查某市學生百米運動成績,從該市學生中按照男女生比例隨機抽取50名學生進行百米測試,學生成績全部都介于13秒到18秒之間,將測試結果按如下方式分成五組,第一組,第二組……第五組,如圖是按上述分組方法得到的頻率分布直方圖.

(Ⅰ)求這組數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.1);
(II)設表示樣本中兩個學生的百米測
試成績,已知
求事件“”的概率.
(Ⅲ) 根據(jù)有關規(guī)定,成績小于16秒為達標.
如果男女生使用相同的達標標準,則男女生達標情況如下

性別
是否達標


合計
達標

______
_____
不達標
_____

_____
合計
______
______

根據(jù)上表數(shù)據(jù),能否有99%的把握認為“體育達標與性別有關”?若有,你能否提出一個更好的解決方法來?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.有甲乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表:

 
優(yōu)秀
非優(yōu)秀
總計
甲班
10[來源:學科網(wǎng)ZXXK]
 
 
乙班
 
30
[來源:學#科#網(wǎng)]
合計
 
 
105
   已知在全部105人中抽到隨機抽取2人為優(yōu)秀的概率為
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認為“成績與班級有關系”。
(3)若按下面的方法從甲班優(yōu)秀的學生抽取一人;把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取的人的序號,試求抽到6或10的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知x與y之間的一組數(shù)據(jù)

x
0
1
2
3
y
1
3
5
7
(1)畫出散點圖
(2)若x與y線性相關,寫出線性回歸方程必定經(jīng)過的點
(3)若x與y線性相關求出線性回歸方程,
(4)說出2個刻畫回歸效果的手段,假設R=0.74說明什么問題。
參考公式

查看答案和解析>>

同步練習冊答案