A. | 10$\sqrt{2}$ | B. | 14 | C. | 5$\sqrt{6}$ | D. | 12 |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,即可得到結(jié)論.
解答 解:解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
設(shè)z=2x+2y得y=-x+$\frac{z}{2}$,
平移直線y=-x+$\frac{z}{2}$
由圖象可知當(dāng)直線y=-x+$\frac{z}{2}$經(jīng)過點(diǎn)A時(shí),直線y=-x+$\frac{z}{2}$的截距最大,此時(shí)z最大.
由$\left\{\begin{array}{l}{y=3}\\{{x}^{2}+{y}^{2}=25}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,即A(4,3),
代入目標(biāo)函數(shù)z=2x+2y得z=2×4+2×3=8+6=14.
即目標(biāo)函數(shù)z=2x+2y的最大值為14.
故選:B.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,-1) | B. | (1,1) | C. | (1,-1) | D. | (-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{3}{4}$,0) | B. | (-$\frac{3}{4}$,0] | C. | (0,$\frac{3}{4}$) | D. | [0,$\frac{3}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
轎車A | 轎車B | 轎車C | |
舒適型 | 100 | 150 | z |
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com