已知點A(4,-2),B(-4,4),C(1,1).求方向與
AB
一致的單位向量.
考點:單位向量
專題:平面向量及應(yīng)用
分析:利用方向與
AB
一致的單位向量=
AB
|
AB
|
即可得出.
解答: 解:
AB
=(-8,6),
∴方向與
AB
一致的單位向量=
AB
|
AB
|
=
(-8,6)
82+62
=(-
4
5
,
3
5
)
點評:本題考查了向量是運算、單位向量,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:x-y+1=0與橢圓:x2+7y2=4交于A,B兩點.

(Ⅰ)求該橢圓的離心率;
(Ⅱ)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個結(jié)論,其中正確的有
 

①在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等;
②如果一組數(shù)據(jù)中每個數(shù)減去同一個非零常數(shù),則這一組數(shù)的平均數(shù)改變,方差不改變;
③一個樣本的方差是s2=
1
20
[(x1-3)2+(x2-3)2+…+(x20-3)2],則這組樣本數(shù)據(jù)的總和等于60;
④數(shù)據(jù)a1,a2,a3,…,an的方差為 δ2,則數(shù)據(jù)2a1,2a2,2a3,…,2an的方差為4δ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x、y滿足
x-y+1≥0
x+y-3≥0
2x-y-3≤0
,則目標(biāo)函數(shù)z=2x+3y的最小值為( 。
A、7B、8C、22D、23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α的終邊在直線3x+4y=0上,求sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某養(yǎng)殖戶要建一個面積為800平方米的矩形養(yǎng)殖場,要求養(yǎng)殖場的一邊利用舊墻(舊墻的長度大于4米),其他各邊用鐵絲網(wǎng)圍成,且在矩形一邊的鐵絲網(wǎng)的正中間要留一個4米的進(jìn)出口.設(shè)矩形的寬為x米,鐵絲網(wǎng)的總長度為y米.
(Ⅰ)寫出y與x的函數(shù)關(guān)系式,并標(biāo)出定義域;
(Ⅱ)問矩形的長與寬各為多少時,所用的鐵絲網(wǎng)的總長度最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,E,F(xiàn)分別為BB1,AC的中點.
(Ⅰ)求證:BF∥平面A1EC;
(Ⅱ)若AB=AA1,求二面角C-A1E-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖如圖所示:如果程序運行的結(jié)果S=1320,那么判斷框中應(yīng)填入( 。
A、K<10B、K≤10
C、K<9D、K≤11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明下列恒等式:
(1)1+sinα=(sin
α
2
+cos
α
2
2;
(2)
1+sin2α-cos2α
1+sin2α+cos2α
=tanα;
(3)
1+sinα
cosα
=
1+tan
α
2
1-tan
α
2
;
(4)tanα+cotα=
2
sin2α

查看答案和解析>>

同步練習(xí)冊答案