分析 (1)z=(2+i)m2-3m(1+i)-2(1-i)=(2m2-3m-2)+(m2-3m+2)i,當(dāng)實(shí)部等于0,虛部不等于0時(shí),列出方程組,求解即可得答案;
(2)當(dāng)2m2-3m-2=-(m2-3m+2),即m=0或m=2時(shí),z為復(fù)平面內(nèi)第二、第四象限角平分線上的點(diǎn)對(duì)應(yīng)的復(fù)數(shù),分類當(dāng)m=0和m=2時(shí),求出|z|即可.
解答 解:z=(2+i)m2-3m(1+i)-2(1-i)=(2m2-3m-2)+(m2-3m+2)i,
(1)當(dāng)$\left\{\begin{array}{l}{2{m}^{2}-3m-2=0}\\{{m}^{2}-3m+2≠0}\end{array}\right.$,即 $m=-\frac{1}{2}$時(shí),z為純虛數(shù);
(2)當(dāng)2m2-3m-2=-(m2-3m+2),即m=0或m=2時(shí),z為復(fù)平面內(nèi)第二、第四象限角平分線上的點(diǎn)對(duì)應(yīng)的復(fù)數(shù),
若m=0,$z=-2+2i,|z|=2\sqrt{2}$,
若m=2,z=0,|z|=0,
∴$|z|=2\sqrt{2}$或|z|=0.
點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m<-1 | B. | m=-1 | C. | m>-1 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高 | |
B. | 在線性回歸分析中,回歸直線不一定過(guò)樣本點(diǎn)的中心($\overline{x}$,$\overline{y}$) | |
C. | 在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好 | |
D. | 自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{1}{2}$,$\frac{3}{2}$] | B. | [0,1] | C. | [$\frac{1}{3}$,$\frac{\sqrt{10}}{3}$] | D. | [$\frac{1}{3}$,$\frac{\sqrt{13}}{3}$] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com