18.已知正方形ABCD的邊長為1,弧BD是以點(diǎn)A為圓心的圓。
(1)在正方形內(nèi)任取一點(diǎn)M,求事件“|AM|≤1”的概率;
(2)用大豆將正方形均勻鋪滿,經(jīng)清點(diǎn),發(fā)現(xiàn)大豆一共28粒,其中有22粒落在圓中陰影部分內(nèi),請據(jù)此估計(jì)圓周率π的近似值(精確到0.01).

分析 (1)根據(jù)已知條件,求出滿足條件的正方形ABCD的面積,及事件“|AM|≤1”對應(yīng)平面區(qū)域的面積,代入幾何概型計(jì)算公式,即可求出答案.
(2)正方形內(nèi)的56粒芝麻顆粒中有44粒落在扇形BAD內(nèi),頻率為$\frac{22}{28}$,用頻率估計(jì)概率,由(1)知$\frac{π}{4}$,可得圓周率π的近似值.

解答 解:(1)如圖,在邊長為1的正方形ABCD內(nèi)任取一點(diǎn)M,滿足條件的點(diǎn)M落在扇形BAD內(nèi)(圖中陰影部分),由幾何概型概率計(jì)算公式,有:$P({|{MA}|≤1})=\frac{{{S_{陰影部分}}}}{{{S_{正方形ABCD}}}}=\frac{π}{4}$,
故事件“|AM|≤1”發(fā)生的概率為$\frac{π}{4}$.
(2)正方形內(nèi)的28粒大豆有22粒落在扇形BAD內(nèi),
頻率為$\frac{22}{28}=\frac{11}{14}$,
用頻率估計(jì)概率,由(1)知$\frac{π}{4}≈\frac{11}{14}$,
∴$π≈\frac{11}{14}×4=\frac{22}{7}≈3.14$,即π的近似值為3.14.

點(diǎn)評 本題考查了隨機(jī)模擬法求圓周率的問題,也考查了幾何概率的應(yīng)用問題,幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:?x<0,x2>0,那么¬P是(  )
A.?x≥0,x2≤0B.?x≥0,x2≤0C.?x<0,x2≤0D.?x<0,x2≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合P={x|1<x<3},Q={x|x>2},則P∩Q=( 。
A.(1,3)B.(2,3)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知復(fù)數(shù)z=(2+i)m2-$\frac{6m}{1-i}-2({1-i})({m∈R})$.
(1)當(dāng)實(shí)數(shù)m取什么值時,復(fù)數(shù)z是純虛數(shù);
(2)若z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二、四象限角平分線上,求|z|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.圓(x-3)2+(y-3)2=4上到直線3x+4y-16=0的距離等于1的點(diǎn)有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,a=3,b=4,sinA=$\frac{1}{3}$,則sinB=( 。
A.$\frac{1}{4}$B.$\frac{5}{9}$C.$\frac{1}{12}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cosA=$\frac{1}{3}$,c=3b,且△ABC面積S△ABC=$\sqrt{2}$.
(1)求邊b.c;
(2)求邊a并判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知單位向量$\overrightarrow a$和$\overrightarrow b$滿足$|{\overrightarrow a-\overrightarrow b}|=\sqrt{3}|{\overrightarrow a+\overrightarrow b}|$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=acosx+b的最大值為1,最小值為-3,試確定$f(x)=bsin(ax+\frac{π}{3})$的遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案