15.已知數(shù)列{an}滿足a1=-1,|an-an-1|=2n-1(n∈N,n≥2),且{a2n-1}是遞減數(shù)列,{a2n}是遞增數(shù)列,則a2016=$\frac{{2}^{2016}-1}{3}$.

分析 由|an-an-1|=2n-1,(n∈N,n≥2),可得:|a2n-a2n-1|=22n-1,|a2n+2-a2n+1|=22n+1,根據(jù):數(shù)列{a2n-1}是遞減數(shù)列,且{a2n}是遞增數(shù)列,可得a2n-a2n-1<a2n+2-a2n+1,可得:a2n-a2n-1=22n-1,同理可得:a2n+1-a2n=-22n,再利用“累加求和”即可得出.

解答 解:由|an-an-1|=2n-1,(n∈N,n≥2),
則|a2n-a2n-1|=22n-1,|a2n+2-a2n+1|=22n+1,
∵數(shù)列{a2n-1}是遞減數(shù)列,且{a2n}是遞增數(shù)列,
∴a2n-a2n-1<a2n+2-a2n+1,
又∵|a2n-a2n-1|=22n-1<|a2n+2-a2n+1|=22n+1
∴a2n-a2n-1>0,即a2n-a2n-1=22n-1,
同理可得:a2n+3-a2n+2<a2n+1-a2n
又|a2n+3-a2n+2|>|a2n+1-a2n|,
則a2n+1-a2n=-22n
當(dāng)數(shù)列{an}的項數(shù)為偶數(shù)時,令n=2k(k∈N*),
∴a2-a1=2,a3-a2=-22,a4-a3=23,a5-a4=-24,…,a2015-a2014=-22014,a2016-a2015=22015
∴a2016-a1=2-22+23-24+…-22014+22015
=$\frac{2[1-(-2)^{2015}]}{1-(-2)}$=$\frac{2}{3}×({2}^{2015}+1)$.
∴a2016=$\frac{{2}^{2016}-1}{3}$.

故答案為:$\frac{{2}^{2016}-1}{3}$.

點評 本題考查了等比數(shù)列前n項和公式、數(shù)列的單調(diào)性,累加法求數(shù)列的通項公式,不等式的性質(zhì)等,同時考查數(shù)列的基礎(chǔ)知識和化歸、分類整合等數(shù)學(xué)思想,考查了分類討論方法、推理能力與計算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若x2+2xy-y2=7(x,y∈R).求x2+y2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.要得到函數(shù)y=3sin2x(x∈R)的圖象,只要將函數(shù)y=3sin(2x+1)(x∈R)的圖象( 。
A.向左平移1個位長度,縱坐標(biāo)不變B.向右平移1個位長度,縱坐標(biāo)不變
C.向左平移$\frac{1}{2}$個位長度,縱坐標(biāo)不變D.向右平移$\frac{1}{2}$個位長度,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,|$\overrightarrow{AB}-\overrightarrow{AC}$|=2,D是邊BC的中點,$\overrightarrow{AE}$=$\frac{1}{3}\overrightarrow{AB}$
(1)求|$\overrightarrow{AD}$|
(2)若AD與CE相交于點F.試用$\overrightarrow{AB}$和$\overrightarrow{AC}$表示$\overrightarrow{AF}$
(3)若點M是線段BC上的一點,且$\overrightarrow{AM}•(\overrightarrow{AB}+\overrightarrow{AC)}$=1,求|$\overrightarrow{AM}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.化簡:${C}_{m}^{7}$-C${\;}_{m+1}^{8}$+C${\;}_{m}^{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.$(φ為參數(shù)).以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線l和圓C的極坐標(biāo)方程;
(2)射線OM:θ=α(其中$0<α<\frac{π}{2}$)與圓C交于O、P兩點,與直線l交于點M,射線ON:$θ=α+\frac{π}{2}$與圓C交于O、Q兩點,與直線l交于點N,求$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$的最大值;
(3)在(2)的條件下,求三角形OMN的內(nèi)切圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖所示,函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)離y軸最近的零點與最大值均在拋物線y=-$\frac{3}{2}$x2+$\frac{1}{2}$x+1上,則f(x)=sin($\frac{π}{2}$x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x+\frac{π}{3})(x≤2010)}\\{f(x-4)(x>2010)}\end{array}\right.$則f(2009)+f(2010)+f(2011)+f(2012)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.(4x+3y)7的展開式中x3y4與x4y3項的系數(shù)之比為$\frac{3}{4}$ (用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案