5.若x2+2xy-y2=7(x,y∈R).求x2+y2的最小值.

分析 設(shè)x2+y2=r2,則x=rcosa,y=rsina,從而化簡可得$\sqrt{2}$r2sin(2a+$\frac{π}{4}$)=7,從而求最小值.

解答 解:設(shè)x2+y2=r2,則x=rcosa,y=rsina,
則x2+2xy-y2=7可化為
r2cos2a+2r2sinacosa-r2sin2a=7,
即r2(cos2a+sin2a)=7,
即$\sqrt{2}$r2sin(2a+$\frac{π}{4}$)=7,
故當(dāng)sin(2a+$\frac{π}{4}$)=1時,r2有最小值為$\frac{7\sqrt{2}}{2}$,
故x2+y2的最小值為$\frac{7\sqrt{2}}{2}$.

點評 本題考查了參數(shù)法的應(yīng)用及三角恒等變換的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=1+log${\;}_{\frac{1}{2}}$x,則f(-4)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)△ABC是銳角三角形,a、b、c分別是內(nèi)角A、B、C所對邊長,已知$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(sinA,-sinB),且m•n=sin($\frac{π}{3}$+B)•sin($\frac{π}{3}-B$).
(1)求角A的值;
(2)若△ABC的面積等于6$\sqrt{3}$,a=2$\sqrt{7}$,求b、c(其中b<c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知指數(shù)函數(shù)y=f(x)的圖象過點P(3,27),則在(0,10]內(nèi)任取一個實數(shù)x,使得f(x)>81的概率為( 。
A.$\frac{3}{10}$B.$\frac{7}{10}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某商場舉辦“迎新年摸球”活動,主辦方準(zhǔn)備了甲、乙兩個箱子,其中甲箱中有四個球,乙箱中有三個球(每個球的大小、形狀完全相同),每一個箱子中只有一個紅球,其余都是黑球.若摸中甲箱中的紅球,則可獲獎金m元,若摸中乙箱中的紅球,則可獲獎金n元.活動規(guī)定:①參與者每個箱子只能摸一次,一次摸一個球;②可選擇先摸甲箱,也可先摸乙箱;③如果在第一個箱子中摸到紅球,則可繼續(xù)在第二個箱子中摸球,否則活動終止.
(1)如果參與者先在乙箱中摸球,求其恰好獲得獎金n元的概率;
(2)若要使得該參與者獲獎金額的期望值較大,請你幫他設(shè)計摸箱子的順序,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.二手車經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進(jìn)行整理,得到如表的對應(yīng)數(shù)據(jù):
使用年數(shù) 2 4 6 8 10
 售價 16 13 9.5 74.5
(Ⅰ)試求y關(guān)于x的回歸直線方程;(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}^{2}}_{i}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)
(Ⅱ)已知每輛該型號汽車的收購價格為w=0.05x2-1.75x+17.2萬元,根據(jù)(Ⅰ)中所求的回歸方程,預(yù)測x為何值時,小王銷售一輛該型號汽車所獲得的利潤z最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知梯形ABCD如圖所示,連接AC,AD:DC:AC:BC:AB=1:1:$\sqrt{2}$:$\sqrt{2}$:2,現(xiàn)沿AC將梯形ABCD折疊成三棱錐D-ABC,則當(dāng)三棱錐D-ABC的體積最大時,二面角D-AB-C的正切值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.使“a<b”成立的必要不充分條件是“②③④”(填上所有滿足題意的序號)
①?x>0,a≤b+x;
②?x≥0,a+x<b;
③?x≥0,a<b+x;
④?x>0,a+x≤b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}滿足a1=-1,|an-an-1|=2n-1(n∈N,n≥2),且{a2n-1}是遞減數(shù)列,{a2n}是遞增數(shù)列,則a2016=$\frac{{2}^{2016}-1}{3}$.

查看答案和解析>>

同步練習(xí)冊答案