10.有4種不同的備選顏色給如圖示的A、B、C、D四塊涂色,要求每塊涂同一種顏色,且相鄰兩塊涂不同的顏色,則不同的涂色方法有( 。┓N.
A.48B.60C.84D.96

分析 每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不相同,然后分類(lèi)研究,A、C不同色;A、C同色兩大類(lèi).

解答 解:分兩種情況:
(1)A、C不同色(注意:B、D可同色、也可不同色,D只要不與A、C同色,所以D可以從剩余的2中顏色中任意取一色):有4×3×2×2=48種;
(2)A、C同色(注意:B、D可同色、也可不同色,D只要不與A、C同色,所以D可以從剩余的3中顏色中任意取一色):有4×3×1×3=36種.
共有84種
故選:C.

點(diǎn)評(píng) 本題主要考查了分類(lèi)計(jì)數(shù)原理,如何分類(lèi)時(shí)關(guān)鍵.分類(lèi)要全要細(xì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},0<x≤2}\\{x-1,-2<x≤0}\end{array}\right.$.
(1)求函數(shù)的定義域,值域;
(2)求f(-1),f(0),f(1);
(3)畫(huà)出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù)(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定義{x}=x-[x],求{$\frac{2013}{2014}$}+{$\frac{201{3}^{2}}{2014}$}+{$\frac{201{3}^{3}}{2014}$}+…+{$\frac{201{3}^{2014}}{2014}$}=1007.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖所示是一個(gè)有n層(n≥2,n∈N*)的六邊形點(diǎn)陣,它的中心是一個(gè)點(diǎn),算作第1層,第2層每邊有2個(gè)點(diǎn),第3層每邊有3個(gè)點(diǎn),…,第n層每邊有n個(gè)點(diǎn),則這個(gè)點(diǎn)陣共有( 。﹤(gè)點(diǎn).
A.n2B.n2+nC.3n2-3n+1D.3n2-3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.研究問(wèn)題:“已知關(guān)于x的不等式ax2-bx+c>0的解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”,有如下解法:由ax2-bx+c>0⇒a-b($\frac{1}{x}$)+c($\frac{1}{x}$)2>0,令y=$\frac{1}{x}$,則y∈($\frac{1}{2}$,1),所以不等式cx2-bx+a>0的解集為($\frac{1}{2}$,1).類(lèi)比上述解法,已知關(guān)于x不等式已知關(guān)于x的不等式$\frac{k}{x+a}+\frac{x+b}{x+c}$<0解集為(-3,-2)∪(1,2),則關(guān)于x的不等式$\frac{kx}{ax-1}$+$\frac{bx-1}{cx-1}$<0的解集為($\frac{1}{2}$,1)∪(-$\frac{1}{2}$,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.雙曲線(xiàn)$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1的焦點(diǎn)坐標(biāo)為(  )
A.(±$\sqrt{7}$,0)B.(0,±$\sqrt{7}$)C.(±5,0)D.(0,±5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖所示某程序框圖,則輸出的n的值是(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若輸出k的值為6,則判斷框內(nèi)可填入的條件是( 。
 
A.s>$\frac{1}{2}$B.s>$\frac{3}{5}$C.s>$\frac{7}{10}$D.s>$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)為偶函數(shù),又在區(qū)間[0,2]上有f(x)=$\left\{\begin{array}{l}{-{x}^{2}-\frac{3}{2}x+5,0≤x≤1}\\{{2}^{x}+2,1<x≤2}\end{array}\right.$,若F(x)=f(x)-a在區(qū)間[-2,2]恰好有4個(gè)零點(diǎn),則a的取值范圍是(4,5).

查看答案和解析>>

同步練習(xí)冊(cè)答案