已知函數(shù)f(x)=試設(shè)計(jì)一個(gè)算法,對(duì)每輸入的一個(gè)x值,都能得到相應(yīng)的函數(shù)值,并畫出流程圖.
解:算法如下: S1 輸入x; S2 如果x≥1,則f(x)=x2-1,否則f(x)=2x+5; S3 輸出f(x). 流程圖如圖: 思路分析:該問題是一個(gè)分段函數(shù)求值問題,當(dāng)x取不同范圍內(nèi)的值時(shí),函數(shù)表達(dá)式不同,因此當(dāng)給出一個(gè)自變量x的值時(shí),必須先判斷x的范圍,然后確定利用哪一段的解析式計(jì)算其函數(shù)值,因此在算法中要加入選擇結(jié)構(gòu). 方法歸納:該題中對(duì)任一x,一旦輸入一個(gè)確定值,則與1的大小關(guān)系也就唯一確定了,由判斷框引出的兩種操作就不可能同時(shí)進(jìn)行,但每一個(gè)流程都有機(jī)會(huì)被執(zhí)行. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省武威市高二下學(xué)期模塊檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x2+ (x≠0).
(1)判斷f(x)的奇偶性,并說明理由;
(2)若f(1)=2,試判斷f(x)在[2,+∞)上的單調(diào)性
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省杭州市金蘭合作組織高二下期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3-3ax2-9a2x+a3.
(1)設(shè)a=1,求函數(shù)f(x)的極值;
(2)若a>,且當(dāng)x∈[1,4a]時(shí),|f′(x)|≤12a恒成立,試確定a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三下學(xué)期開學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷 題型:解答題
(本小題滿分16分)已知函數(shù)f(x)=是定義在R上的奇函數(shù),其值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052503512729687978/SYS201205250353498437943046_ST.files/image002.png">.
(1) 試求a、b的值;
(2) 函數(shù)y=g(x)(x∈R)滿足:
條件1: 當(dāng)x∈[0,3)時(shí),g(x)=f(x);條件2: g(x+3)=g(x)lnm(m≠1).
① 求函數(shù)g(x)在x∈[3,9)上的解析式;
② 若函數(shù)g(x)在x∈[0,+∞)上的值域是閉區(qū)間,試探求m的取值范圍,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com