19.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f(3)的實(shí)數(shù)x的取值范圍是(-1,2).

分析 由f(x)為偶函數(shù)且在[0,+∞)上單調(diào)遞增,便可由f(2x-1)<f(3)得出|2x-1|<3,解該絕對(duì)值不等式便可得出x的取值范圍.

解答 解:f(x)為偶函數(shù);
∴由f(2x-1)<f(3)得,f(|2x-1|)<f(3);
又f(x)在[0,+∞)上單調(diào)遞增;
∴|2x-1|<3;
解得-1<x<2;
∴x的取值范圍是:(-1,2).
故答案為:(-1,2).

點(diǎn)評(píng) 考查偶函數(shù)的定義,增函數(shù)的定義,根據(jù)函數(shù)單調(diào)性解不等式的方法,以及絕對(duì)值不等式的解法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.以下選項(xiàng)中判斷正確的是( 。
A.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y全不為0,則x2+y2≠0”
B.若命題$p:?{x_0}∈R,{x_0}^2-{x_0}+1<0$,則?p:?x∉R,x2-x+1≥0
C.若命題“p或q”為真命題,則命題p和命題q均為真命題
D.“x>3”是“x>2”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)y=2x+1,x∈{x∈Z|0≤x<3},則該函數(shù)的值域?yàn)椋ā 。?table class="qanwser">A.{y|1≤y<7}B.{y|1≤y≤7}C.{1,3,5,7}D.{1,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)集合A={x|x2-4x+3≥0},B={x|2x-3≤0},則A∪B=(  )
A.(-∞,1]∪[3,+∞)B.[1,3]C.$[{\frac{3}{2},3}]$D.$({-∞,\frac{3}{2}}]∪[{3,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在平面直角坐標(biāo)系xOy中,已知A,B,C是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上不同的三點(diǎn),$A(\sqrt{10},\frac{{\sqrt{10}}}{2})$,B(-2,-2),C在第三象限,線段BC的中點(diǎn)在直線OA上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)P在橢圓上(異于點(diǎn)A,B,C)且直線PB,PC分別交直線OA于M,N兩點(diǎn),證明$\overrightarrow{OM}•\overrightarrow{ON}$為定值并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在銳角△ABC中,設(shè)角A,B,C所對(duì)邊分別為a,b,c,已知向量$\overrightarrow{m}$=(b+c,a2+bc),$\overrightarrow{n}$=(b+c,-1),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)求角A的大。
(2)若a=3,求△ABC的周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知命題p:若x<-3,則x2-2x-8>0,則下列敘述正確的是(  )
A.命題p的逆命題是:若x2-2x-8≤0,則x<-3
B.命題p的否命題是:若x≥-3,則x2-2x-8>0
C.命題p的否命題是:若x<-3,則x2-2x-8≤0
D.命題p的逆否命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在直三棱柱ABC-A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分別是A1C1,BC的中點(diǎn).
(1)證明:AB⊥平面BB1C1C;
(2)設(shè)P是BE的中點(diǎn),求三棱錐P-B1C1F的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和Sn=k(3n-1),且a3=27.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案