【題目】已知直線是雙曲線的一條漸近線,點(diǎn)在雙曲線C上,設(shè)坐標(biāo)原點(diǎn)為O.
(1)求雙曲線C的方程;
(2)若過(guò)點(diǎn)的直線l與雙曲線C交于R、S兩點(diǎn),若,求直線l的方程;
(3)設(shè)在雙曲線上,且直線AM與y軸相交于點(diǎn)P,點(diǎn)M關(guān)于y軸對(duì)稱的點(diǎn)為N,直線AN與y軸相交于點(diǎn)Q,問(wèn):在x軸上是否存在定點(diǎn)T,使得?若存在,求出點(diǎn)T的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1) (2) (3)存在,
【解析】
(1)根據(jù)漸近線求解a,b關(guān)系,再根據(jù)雙曲線上一點(diǎn)A求解雙曲線標(biāo)準(zhǔn)方程;
(2)由知D為RS中點(diǎn),利用點(diǎn)差法求解直線l斜率,進(jìn)而求解直線方程;
(3)根據(jù)直線斜率及點(diǎn)斜式方程,分別列出直線AM和直線AN方程,求P,Q坐標(biāo),滿足,即可求解點(diǎn)T坐標(biāo).
(1)由直線是雙曲線漸近線,則,則雙曲線方程,
代入,解得,
故雙曲線C的方程為
(2)由題意,可知D為RS中點(diǎn),
設(shè)RS兩點(diǎn)坐標(biāo)為,代入原式
,兩式作差得
整理得,
再由中點(diǎn)坐標(biāo)公式
解得
故直線l的方程為
(3)存在,
根據(jù)題意,由,則斜率,直線,
當(dāng)時(shí),,即
同理,由則斜率,直線,
當(dāng)時(shí),,即
設(shè):,則
,,
又,得到
解得,又雙曲線C中,或
故T坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;
(Ⅲ)若恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()的離心率為,短軸長(zhǎng)為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過(guò)定點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B是海岸線OM、ON上兩個(gè)碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為、,測(cè)得,,以點(diǎn)O為坐標(biāo)原點(diǎn),射線OM為x軸的正半軸,建立如圖所示的直角坐標(biāo)系,一艘游輪以小時(shí)的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線BB經(jīng)過(guò)點(diǎn)Q).
(1)問(wèn)游輪自碼頭A沿方向開(kāi)往碼頭B共需多少分鐘?
(2)海中有一處景點(diǎn)P(設(shè)點(diǎn)P在平面內(nèi),,且),游輪無(wú)法靠近,求游輪在水上旅游線AB航行時(shí)離景點(diǎn)P最近的點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于雙曲線:(),若點(diǎn)滿足,則稱在的外部;若點(diǎn)滿足,則稱在的內(nèi)部.
(1)若直線上點(diǎn)都在的外部,求的取值范圍;
(2)若過(guò)點(diǎn),圓()在內(nèi)部及上的點(diǎn)構(gòu)成的圓弧長(zhǎng)等于該圓周長(zhǎng)的一半,求、滿足的關(guān)系式及的取值范圍;
(3)若曲線()上的點(diǎn)都在的外部,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)f(x)在處取得極大值,則實(shí)數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使不等式f(x)≥2x-3對(duì)任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)(m∈R).
(1)當(dāng)m=1時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)F(x)=f(x)+xm+2有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(理)已知數(shù)列滿足(),首項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)數(shù)列滿足,記數(shù)列的前項(xiàng)和為,是△ABC的內(nèi)角,若對(duì)于任意恒成立,求角的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com