函數(shù)f(x)=2x+3x-6的零點(diǎn)所在的區(qū)間是(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(-1,0)
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)零點(diǎn)判定定理可知,求函數(shù)值,使之一正一負(fù)即可.
解答: 解:∵f(0)=20+3×0-6=-5,
f(1)=21+3×1-6=-1,
f(2)=22+3×2-6=4,
故選B.
點(diǎn)評(píng):本題考查了函數(shù)零點(diǎn)判定定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的最大值和最小值.
(1)y=2sin(2x+
π
4
)+1;
(2)y=-cos2x+cosx+
7
4
;
(3)y=
3sinx-1
sinx+2

(4)y=3-4cos(2x+
π
3
),x∈[-
π
3
,
π
6
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+1,g(x)=ex(其中e是自然對(duì)數(shù)的底數(shù)).
(1)若a=-1,求函數(shù)y=f(x)•g(x)在[-1,2]上的最大值;
(2)若a=-1,關(guān)于x的方程f(x)=k•g(x)有且僅有一個(gè)根,求實(shí)數(shù)k的取值范圍;
(3)若對(duì)任意的x1、x2∈[0,2],x1≠x2,不等式|f(x1)-f(x2)|<|g(x1)-g(x2)|都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A、B是橢圓C:
x2
m2
+
y2
n2
=1(m>0,n>0)與直線x-3y+2=0的交點(diǎn).點(diǎn)M是AB的中點(diǎn),且點(diǎn)M的橫坐標(biāo)為-
1
2
.若橢圓C的焦距為8橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差為2的等差數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且S3+S5=58.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若{bn}為等比數(shù)列,且b1b10=
1
2
a2
,記Tn=log3b1+log3b2+log3b3+…+log3bn,求T10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

目前手機(jī)上網(wǎng)方式通常有3G模式和2G模式兩種:若采用3G上網(wǎng)每月用量在500分鐘以下(包括500分鐘)按30元計(jì)費(fèi),超過500分鐘的部分按0.15元/分鐘計(jì)費(fèi),若采用2G上網(wǎng),每月計(jì)費(fèi)方式是按0.1元計(jì)費(fèi).
(1)小周12月份用3G模式上網(wǎng)20小時(shí),要付多少上網(wǎng)費(fèi)?
(2)小周10月份用2G模式上網(wǎng),付了90元上網(wǎng)費(fèi),那么他這個(gè)月上網(wǎng)多少分鐘?
(3)試分析如何選擇上網(wǎng)方式更合理?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x+4
x
的定義域(  )
A、{x|x≠0}
B、(-4,+∞)
C、(-4,0)∪(0,+∞)
D、[-4,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,一個(gè)空間幾何體的正視圖和側(cè)視圖都是全等的等腰三角形,俯視圖是一個(gè)圓,那么這個(gè)幾何體是( 。
A、正方體B、圓錐C、圓柱D、半球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1
x=1-2t
y=2+kt.
(t為參數(shù)),l2
x=s
y=1-2s.
(s為參數(shù)),若l1∥l2,則k=
 
;l1⊥l2,則k=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案