某同學(xué)動(dòng)手做實(shí)驗(yàn):《用隨機(jī)模擬的方法估計(jì)圓周率的值》,在如圖的正方形中隨機(jī)撒豆子,每個(gè)豆子落在正方形內(nèi)任何一點(diǎn)是等可能的,若他隨機(jī)地撒50粒統(tǒng)計(jì)得到落在圓內(nèi)的豆子數(shù)為39粒,則由此估計(jì)出的圓周率π的值為
 
.(精確到0.01)
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:本題是典型的測度為面積的幾何概型問題,圓的面積和正方形的面積求出就可以得出概率.
解答: 解:由題意得:
設(shè)正方形的邊長為1,
圓的面積為π.
正方形的面積為4.
∴P(A)=
39
50
=
π
4

故答案為:3.12
點(diǎn)評:本題主要考查了幾何概型的概率,解題的關(guān)鍵弄清概率類型,同時(shí)考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x0∈R,e x0<0,則¬p是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在集合M上的函數(shù),若區(qū)間D⊆M,且對任意x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)判斷函數(shù)f(x)=x+
2x-1
在定義域上是否封閉,并說明理由;
(2)若函數(shù)g(x)=
3x+a
x+1
在區(qū)間[3,10]上封閉,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+mx-6
的定義域?yàn)閇2,3],則實(shí)數(shù)m的值為(  )
A、5B、-5C、10D、-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-4x-5≤0},B={x2-2x-m<0}.
(1)當(dāng)m=3時(shí),求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x+2
x-1
, x≠1
   1,x=1
則f(
1
101
)+f(
2
101
)+f(
3
101
)+…+f(
201
101
)的值為( 。
A、199B、200
C、201D、202

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x2+x-1在區(qū)間[a,a+1]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩焦點(diǎn)F1、F2,點(diǎn)P在橢圓上,且PF1⊥PF2,已知|PF1|=3,|F1F2|=5,試建立適當(dāng)?shù)淖鴺?biāo)系求出橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的參數(shù)方程為
x=2+2cosθ
y=-
3
+2sinθ
(θ為參數(shù))在直角坐標(biāo)系xoy中以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),(
2
3
3
π
2
).
(1)設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;
(2)判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案