分析 由對立事件性質得P(A)+P(B)=$\frac{1}{y}+\frac{4}{x}$=1,由此利用基本不等式能求出x+y的最小值.
解答 解:A,B互為對立事件,其概率分別為P(A)=$\frac{1}{y}$,P(B)=$\frac{4}{x}$,且x>0,y>0,
∴P(A)+P(B)=$\frac{1}{y}+\frac{4}{x}$=1,
∴x+y=(x+y)($\frac{1}{y}+\frac{4}{x}$)=$\frac{x}{y}+1+4+\frac{4y}{x}$≥5+2$\sqrt{\frac{x}{y}•\frac{4y}{x}}$=9.
當且僅當$\frac{x}{y}=\frac{4y}{x}$時取等號,∴x+y的最小值為9.
故答案為:9.
點評 本題考查兩數和的最小值的求法,是基礎題,解題時要認真審題,注意對立事件及基本不等式性質的合理運用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|x<0} | B. | {x|0<x<4} | C. | {x|x≥4} | D. | R |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -4031 | B. | -4032 | C. | -4033 | D. | -4034 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|$\frac{1}{2}$<x<3} | B. | {x|x<$\frac{1}{2}$或x>3} | C. | {x|-$\frac{1}{2}$<x<3} | D. | ∅ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com