19.已知|$\overrightarrow a}$|=1,|$\overrightarrow b}$|=$\sqrt{3}$,<$\overrightarrow a,\overrightarrow b$>=150°,則|2$\overrightarrow a-\overrightarrow b}$|=$\sqrt{13}$.

分析 根據(jù)向量的數(shù)量積公式計算模的平方,開方即可得到答案.

解答 解:|$\overrightarrow a}$|=1,|$\overrightarrow b}$|=$\sqrt{3}$,<$\overrightarrow a,\overrightarrow b$>=150°,
則|2$\overrightarrow a-\overrightarrow b}$|2=4|$\overrightarrow a}$|2+|$\overrightarrow b}$|2-4|$\overrightarrow a}$|•|$\overrightarrow b}$|cos<$\overrightarrow a,\overrightarrow b$>=4+3-4$\sqrt{3}$×(-$\frac{\sqrt{3}}{2}$)=13,
則|2$\overrightarrow a-\overrightarrow b}$|=$\sqrt{13}$,
故答案為:$\sqrt{13}$

點評 本題考查了向量的數(shù)量積的運算,關(guān)鍵掌握數(shù)量積公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)=$\frac{2x}{x+1}$,則f($\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…f(${\frac{1}{2}}$)+f(1)+f(2)+…+f(2016)=4031.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,若∠A=60°,b=16,且此三角形的面積S=220$\sqrt{3}$,則a的值是( 。
A.$\sqrt{2400}$B.25C.55D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知1<x<2,a=$\frac{lnx}{x}$,b=$\frac{ln{x}^{2}}{{x}^{2}}$,c=($\frac{lnx}{x}$)2,則a,b,c的大小關(guān)系為(用“<”連接):c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.根據(jù)如表樣本數(shù)據(jù),
x345678
y42.5-0.5-1-2-3
得到了回歸直線方程:$\widehat{y}$=bx+a,則( 。
A.a>0,b>0B.a<0,b>0C.a>0,b<0D.a<0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.能夠把圓O:x2+y2=16的周長和面積同時分為相等的兩部分的函數(shù)稱為圓O的“和諧函數(shù)”,下列函數(shù)中不是圓O的和諧函數(shù)是( 。
A.cosxB.$tan\frac{x}{2}$C.sin3xD.$ln\frac{5-x}{5+x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知O為坐標(biāo)原點,過點P(0,2)的直線l與橢圓x2+2y2=2相交于不同的點A,B,求△OAB面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果PA、PB、PC兩兩垂直,那么點P在平面ABC內(nèi)的投影一定是△ABC( 。
A.重心B.內(nèi)心C.外心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.從集合U=(a,b,c}的子集中任意選出兩個不同集合A,B,要求A⊆B,那么,有19種不同的選法.

查看答案和解析>>

同步練習(xí)冊答案