10.在△ABC中,若∠A=60°,b=16,且此三角形的面積S=220$\sqrt{3}$,則a的值是(  )
A.$\sqrt{2400}$B.25C.55D.49

分析 由已知及三角形面積公式可求c的值,進(jìn)而利用余弦定理即可計算求得a的值.

解答 解:在△ABC中,∵∠A=60°,b=16,三角形的面積S=220$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×16×c×\frac{\sqrt{3}}{2}$,
∴解得:c=55,
∴a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{1{6}^{2}+5{5}^{2}-2×16×55×\frac{1}{2}}$=49.
故選:D.

點(diǎn)評 本題主要考查了三角形面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知集合A到B的映射f:(x,y)→(2x-2y,14x+2y),那么集合A中元素(1,2)在B中的象是(-2,18),集合B中的元素(1,2)在A中的原象為($\frac{3}{16},-\frac{5}{16}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.對具有線性相關(guān)關(guān)系的變量x、y,有一組觀測數(shù)據(jù)(xi,yi)(i=1,2,…,9),其回歸方程為y=$\frac{1}{10}$x+a,且x1+x2+…+x9=10,y1+y2+…+y9=19,則實(shí)數(shù)a的值是( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.關(guān)于x的不等式x2-ax+a>0恒成立,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,0)∪(2,+∞)B.(0,2)C.(-∞,0)∪(4,+∞)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1與底面ABC成角為θ,AB⊥AC.
(1)若θ=$\frac{π}{2}$,求證:AC⊥BA1; 
(2)若M為A1C1的中點(diǎn),問:A1B上是否存在點(diǎn)N,使得MN∥平面BCC1B1?
若存在,求出$\frac{{{A_1}N}}{NB}$的值,并給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin2x.
(1)求函數(shù)f(x)的對稱軸及單調(diào)增區(qū)間;
(2)若α為銳角,且f($\frac{α}{2}$)=$\frac{3}{4}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若0<b<a,下列不等式中不一定成立的是( 。
A.$\frac{1}{a-b}>\frac{1}$B.$\frac{1}{a}<\frac{1}$C.$\sqrt{a}>\sqrt$D.-a<-b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知|$\overrightarrow a}$|=1,|$\overrightarrow b}$|=$\sqrt{3}$,<$\overrightarrow a,\overrightarrow b$>=150°,則|2$\overrightarrow a-\overrightarrow b}$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\frac{co{t}^{2016}θ+2}{sinθ+1}$=1,那么(sinθ+2)2(cosθ+1)的值為( 。
A.9B.8C.12D.不確定

查看答案和解析>>

同步練習(xí)冊答案