對(duì)任意實(shí)數(shù)λ,直線l1:x+λy-m-λn=0與圓C:x2+y2=r2總相交于兩不同點(diǎn),則直線l2:mx+ny=r2與圓C的位置關(guān)系是
相離
相離
分析:由直線l1的方程可得它經(jīng)過定點(diǎn)(m,n),結(jié)合條件可得點(diǎn)(m,n)在圓C的內(nèi)部,故有 m2+n2<r2.再求得點(diǎn)C到直線l2的距離為d>半徑r,
可得直線l2與圓C的位置關(guān)系是相離.
解答:解:由直線l1:x+λy-m-λn=0 即 (x-m)+λ(y-n)=0,顯然直線l1:經(jīng)過定點(diǎn)(m,n).
再根據(jù)l1與圓C:x2+y2=r2總相交于兩不同點(diǎn),可得點(diǎn)(m,n)在圓C的內(nèi)部,∴m2+n2<r2
再根據(jù)點(diǎn)C到直線l2的距離為d=
|0+0-r2|
m2+n2
=
r2
m2+n2
r2
r
=r,
故直線l2:mx+ny=r2與圓C的位置關(guān)系是 相離,
故答案為 相離.
點(diǎn)評(píng):本題主要考查直線過定點(diǎn)問題,點(diǎn)到直線的距離公式的應(yīng)用,直線和圓的位置關(guān)系的判斷方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線方程f(x)=sin2x+2ax(a∈R),若對(duì)任意實(shí)數(shù)m,直線l:x+y+m=0都不是曲線y=f(x)的切線,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下五個(gè)命題中:
①若兩直線平行,則兩直線斜率相等;
②設(shè)F1、F2為兩個(gè)定點(diǎn),a為正常數(shù),且||PF1|-|PF2||=2a,則動(dòng)點(diǎn)P的軌跡為雙曲線;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④對(duì)任意實(shí)數(shù)k,直線l:kx-y+1-k=0與圓x2+y2-2y-4=0的位置關(guān)系是相交;
⑤P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點(diǎn),F(xiàn)為它的一個(gè)焦點(diǎn),則以PF為直徑的圓與以長(zhǎng)軸為直徑的圓相切.
其中真命題的序號(hào)為
③④⑤
③④⑤
.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+cosθ)2+(y-sinθ)2=1,

直線l:y=kx,下面四個(gè)命題:

A.對(duì)任意實(shí)數(shù)k與θ,直線l和圓M相切;

B.對(duì)任意實(shí)數(shù)k與θ,直線l和圓M有公共點(diǎn);

C.對(duì)任意實(shí)數(shù)θ,必存在實(shí)數(shù)k,使得直線l與和圓M相切;

D.對(duì)任意實(shí)數(shù)k,必存在實(shí)數(shù)θ,使得直線l與和圓M相切

其中真命題的代號(hào)是___________(寫出所有真命題的代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省南陽市高三第八次周考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知曲線方程f(x)=sin2x+2ax(a∈R),若對(duì)任意實(shí)數(shù)m,直線l:x+y+m=0都不是曲線y=f(x)的切線,則a的取值范圍是

A.(-,-1)∪(-1,0)                   B.(-,-1)∪(0,+)

C.(-1,0)∪(0,+)                     D.a(chǎn)∈R且a≠0,a≠-1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+cosθ)2+(y-sinθ)2=1,直線l:y=kx,下面四個(gè)命題:

A.對(duì)任意實(shí)數(shù)k與θ,直線l和圓M相切;

B.對(duì)任意實(shí)數(shù)k與θ,直線l和圓M有公共點(diǎn);

C.對(duì)任意實(shí)數(shù)θ,必存在實(shí)數(shù)k,使得直線l與圓M相切;

D.對(duì)任意實(shí)數(shù)k,必存在實(shí)數(shù)θ,使得直線l與圓M相切.

其中真命題的代號(hào)是______________.(寫出所有真命題的代號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案