在△ABC中,如果a:b:c=2:
6
:(
3
+1),求這個(gè)三角形的最小角.
考點(diǎn):余弦定理
專(zhuān)題:解三角形
分析:由題意根據(jù)大邊對(duì)大角可得a邊對(duì)的角A為最小角,再由余弦定理求得cosA 的值,可得最小角A的值.
解答: 解:△ABC中,如果a:b:c=2:
6
:(
3
+1),可設(shè)a=2k、b=
6
k、c=(
3
+1)k,
故a邊對(duì)的角A為最小角,由余弦定理可得cosA=
b2+c2-a2
2bc
=
2
3
(
3
+1)
2
6
(
3
+1)
=
2
2
,
∴A=
π
4
點(diǎn)評(píng):本題主要考查余弦定理的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn=2n2-3n,求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|1-2x|,x∈[0,1],記f1(x)=f(x),且fn+1(x)=f[fn(x)],n∈N*
(1)若函數(shù)y=f(x)-ax僅有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是
 

(2)若函數(shù)y=fn(x)-log2(x+1)的零點(diǎn)個(gè)數(shù)為an,則滿(mǎn)足an<2(1+2+…+n)的所有n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=t2(a-a2)+t+1>0恒成立且t∈(0,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

舉例說(shuō)明,在同一坐標(biāo)系內(nèi).
(1)y=f(x)與x=f-1(y)的圖象有什么關(guān)系?
(2)y=f(x)與y=f-1(x)的圖象有什么關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
lnx
x

(1)求f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式lnx<mx對(duì)一切x∈[a,2a](a>0)都成立,求m范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:?x∈[-1,1],x+m>0命題q:方程
x2
m-4
-
y2
m+2
=1表示雙曲線(xiàn).
(1)寫(xiě)出命題p的否定;
(2)若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市物價(jià)局調(diào)查了治療某種流感的常規(guī)藥品在2012年每個(gè)月的批發(fā)價(jià)格和該藥品在藥店的銷(xiāo)售價(jià)格,調(diào)查發(fā)現(xiàn),該藥品的批發(fā)價(jià)按月份以12元/盒為中心價(jià)隨某一正弦曲線(xiàn)上下波動(dòng),且3月份的批發(fā)價(jià)格最高為14元/盒,7月份的批發(fā)價(jià)格最低為10元/盒.該藥品在藥店的銷(xiāo)售價(jià)格按月份以14元/盒為中心價(jià)隨另一正弦曲線(xiàn)上下波動(dòng),且5月份的銷(xiāo)售價(jià)格最高為16元/盒,9月份的銷(xiāo)售價(jià)格最低為12元/盒.
(1)求該藥品每盒的批發(fā)價(jià)格f(x)和銷(xiāo)售價(jià)格g(x)關(guān)于月份x的函數(shù)解析式;
(2)假設(shè)某藥店每月初都購(gòu)進(jìn)這種藥品p盒,且當(dāng)月售完,求該藥店在2012年哪些月份是盈利的?說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-kxα-2(k,α∈R)的圖象經(jīng)過(guò)點(diǎn)(1,0),設(shè)g(x)=
f(x),x≤0
log2(x+1),x>0
,若g(t)=2,則實(shí)數(shù)t=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案