設Sn為等差數(shù)列{an}的前n項和,若S3=3,S6=24,則S9=
 
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的性質(zhì)得S3,S6-S3,S9-S6成等差數(shù)列,由此能求出結果.
解答: 解:∵Sn為等差數(shù)列{an}的前n項和,且S3=3,S6=24,
∴S3,S6-S3,S9-S6成等差數(shù)列,
設S9=x,則2(24-3)=3+(x-24),
解得x=63.
故答案為:63.
點評:本題考查等差數(shù)列的前9項和的求法,解題時要認真審題,注意等差數(shù)列性質(zhì)的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,點E是PD的中點.
(1)求證:PB∥平面AEC;
(2)求直線BP與平面PAC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
2
x
-1)+x,則當x>1時,函數(shù)f(x)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平行四邊形ABCD中,E是BC的一個四等分點,F(xiàn)是DC的一個三等分點,且
AB
=
a
,
AD
=
b
,試用
a
,
b
表示下列向量:
(1)
DE
=
 

(2)
BF
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P,Q分別為圓x2+(y-6)2=2和橢圓
x2
10
+y2=1上的動點,則|PQ|max=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)是R上的奇函數(shù),則f(-2013)+f(0)+f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sin(2x-
π
4
)的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且c=
3
asinC-ccosA
(Ⅰ)求A;
(Ⅱ)若a=2,△ABC的面積為
3
,求b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=lg(-x2-2x+3)的定義域是
 
(用區(qū)間表示).

查看答案和解析>>

同步練習冊答案