【題目】高考復(fù)習(xí)經(jīng)過二輪“見多識廣”之后,為了研究考前“限時(shí)搶分”強(qiáng)化訓(xùn)練次數(shù)與答題正確率﹪的關(guān)系,對某校高三某班學(xué)生進(jìn)行了關(guān)注統(tǒng)計(jì),得到如下數(shù)據(jù):

1

2

3

4

20

30

50

60

(1)求關(guān)于的線性回歸方程,并預(yù)測答題正確率是100﹪的強(qiáng)化訓(xùn)練次數(shù);

(2)若用表示統(tǒng)計(jì)數(shù)據(jù)的“強(qiáng)化均值”(精確到整數(shù)),若“強(qiáng)化均值”的標(biāo)準(zhǔn)差在區(qū)間內(nèi),則強(qiáng)化訓(xùn)練有效,請問這個(gè)班的強(qiáng)化訓(xùn)練是否有效?

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

,

樣本數(shù)據(jù)的標(biāo)準(zhǔn)差為:.

【答案】(1);(2)見解析.

【解析】

(1)根據(jù)條件中的數(shù)據(jù)可求得,進(jìn)而可得關(guān)于的線性回歸方程,然后進(jìn)行預(yù)測即可.(2)先求出這四組數(shù)據(jù)的“強(qiáng)化均值”,然后再求出標(biāo)準(zhǔn)差,最后根據(jù)題意作出判斷即可.

(1)由所給數(shù)據(jù)計(jì)算得:,,

,

,

∴所求回歸直線方程是

令100=14+5,解得=6.79.

∴預(yù)測答題正確率是100﹪的強(qiáng)化訓(xùn)練次數(shù)為7次.

(2)經(jīng)計(jì)算知,這四組數(shù)據(jù)的“強(qiáng)化均值”分別為5,6,8,9,其平均數(shù)是7,

所以“強(qiáng)化均值”的標(biāo)準(zhǔn)差是,

∴這個(gè)班的強(qiáng)化訓(xùn)練有效.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是定義在R上的函數(shù),對R都有,且當(dāng)0時(shí),<0,=1.

(1)求的值

(2)求證:為奇函數(shù);

(3)求在[-2,4]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃在迎春節(jié)聯(lián)歡會(huì)中設(shè)一項(xiàng)抽獎(jiǎng)活動(dòng):在一個(gè)不透明的口袋中裝入外形一樣號

碼分別為1,2,3,…,10的十個(gè)小球;顒(dòng)者一次從中摸出三個(gè)小球,三球號碼有且僅有兩個(gè)連號的為三等獎(jiǎng),獎(jiǎng)金30元;三球號碼都連號為二等獎(jiǎng),獎(jiǎng)金60元;三球號碼分別為1,5,10為一等獎(jiǎng),獎(jiǎng)金240元;其余情況無獎(jiǎng)金。

(1)求員工甲抽獎(jiǎng)一次所得獎(jiǎng)金ξ的分布列與期望;

(2)員工乙幸運(yùn)地先后獲得四次抽獎(jiǎng)機(jī)會(huì),他得獎(jiǎng)次數(shù)的方差是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,從該地區(qū)調(diào)查了500位老人,結(jié)果如下:

性別

是否需要志愿者

需要

40

30

不需要

160

270

(1)估計(jì)該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;

(2)能否有99℅的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?提供幫助的老年人的比例?說明理由.

0.050

0.010

0.001

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京時(shí)間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進(jìn)行最后一輪較量,獲得本場比賽勝利,最終人機(jī)大戰(zhàn)總比分定格1:4.人機(jī)大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(Ⅰ)根據(jù)已知條件完成列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計(jì)

10

55

合計(jì)

(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為X。若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望 E(X) 和方差 D(X) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值和最小值.

(1)求的值;

(2)設(shè),

證明:對任意實(shí)數(shù),函數(shù)的圖象與直線最多只有一個(gè)交點(diǎn);

(3)設(shè),是否存在實(shí)數(shù)m和nm<n,使的定義域和值域分別為,如果存在,求出m和n的值.若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為三角形的三邊,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函,其中.

(Ⅰ)若,求曲線在點(diǎn)(2,f(2))處的切線方程;

(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(Ⅰ)若a=﹣1,證明:函數(shù)f(x)是(0,+∞)上的減函數(shù);
(Ⅱ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x﹣y=0平行,求a的值;
(Ⅲ)若x>0,證明: (其中e=2.71828…是自然對數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊答案