已知函數(shù)f(x)=
1
3
x3+ax2-4在區(qū)間(0,2)上是減函數(shù),則a的范圍是(  )
A、(-∞,3]
B、[-1,+∞)
C、[3,+∞)
D、(-∞,-1]
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出函數(shù)的導(dǎo)數(shù),由題意得不等式,解出即可.
解答: 解:∵f′(x)=x2+2ax,
∴f′(2)=4+4a≤0,
解得:a≤-1,
故選;D.
點(diǎn)評(píng):本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

樣本(x1,x2,…,xn)的平均數(shù)為x,樣本(y1,y2,…,yn)的平均數(shù)為y(y≠x),樣本(x1,x2,…,xn,y1,y2,…,yn)的平均數(shù)z=λx+μy,若直線l:(λ+2)x-(1+2μ)y+1-3λ=0,則下列敘述不正確的有
①直線l恒過(guò)定點(diǎn)(1,1);
②直線l與圓 (x-1)2+(y-1)2=4相交;
③直線l到原點(diǎn)的最大距離為
2
;
④直線l與直線l′:(2λ-3)x-(3-μ)y=0垂直.( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①終邊相同的角的同名函數(shù)值相等;
②終邊不同的角的同名函數(shù)值不相等;
③若sinα>0,則α是第一或第二象限的角;
④若α是第二象限角,且P(x,y)是其終邊上的一點(diǎn),則cosα=
-x
x2+y2
;
⑤若α、β是第二象限的角,且α>β,則cosα<cosβ.
其中正確的命題有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=21.2,b=(
1
2
)-0.8
,c=2log52,則( 。
A、c<b<a
B、b<a<c
C、c<a<b
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1,點(diǎn)E,F(xiàn),G分別是線段B1B,AB和A1C上的動(dòng)點(diǎn),觀察直線CE與D1F,CE與D1G.給出下列結(jié)論:
①對(duì)于任意給定的點(diǎn)E,存在點(diǎn)F,使得D1F⊥CE;
②對(duì)于任意給定的點(diǎn)F,存在點(diǎn)E,使得CE⊥D1F;
③對(duì)于任意給定的點(diǎn)E,存在點(diǎn)G,使得D1G⊥CE;
④對(duì)于任意給定的點(diǎn)G,存在點(diǎn)E,使得CE⊥D1G.
其中正確結(jié)論的序號(hào)是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)在(1,+∞)上是增函數(shù)的是( 。
A、y=-2x
B、y=log 
1
3
x
C、y=-(x-1)
D、y=|x-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的個(gè)數(shù)是( 。
(1)若直線l上有無(wú)數(shù)個(gè)點(diǎn)不在α內(nèi),則l∥α
(2)若直線l與平面α平行,l與平面α內(nèi)的任意一直線平行
(3)兩條平行線中的一條直線與平面平行,那么另一條也與這個(gè)平面平行
(4)若一直線a和平面α內(nèi)一直線b平行,則a∥α
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖程序:如果輸入5,則該程序運(yùn)行結(jié)果為(  )
A、1B、10C、25D、26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD為菱形,AB=1,AA1=
6
2
,∠ABC=60°.證明:BD1⊥平面AB1C.

查看答案和解析>>

同步練習(xí)冊(cè)答案