已知區(qū)域M:x2+y2≤4,區(qū)域N:-x≤y≤x,隨機(jī)向區(qū)域M中投放一點(diǎn).該點(diǎn)落在區(qū)域N內(nèi)的概率為( 。
A、
1
4
B、
π
4
C、
1
8
D、
π
8
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:作出可行域,以面積為測度,即可求得概率.
解答: 解:區(qū)域M:x2+y2≤4的面積為π•22=4π,
區(qū)域N:-x≤y≤x,為圖中陰影部分,其面積為π,
∴該點(diǎn)落在區(qū)域N內(nèi)的概率為
π
=
1
4

故選A.
點(diǎn)評:本題考查概率的計(jì)算,考查面積的計(jì)算,確定以面積為測度是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,Sn=λan-1(其中λ為常數(shù))
(1)是否存在實(shí)數(shù)λ,使得數(shù)列{an}是等差數(shù)列?若存在,求出λ的值,若不存在,說明理由.
(2)當(dāng)λ=2時(shí),若數(shù)列{bn}滿足bn+1=an+bn,且b1=
3
2
,令cn=2bn+n.求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各函數(shù)中,是指數(shù)函數(shù)的是( 。
A、y=(-3)x
B、y=-3x
C、y=3x-1
D、y=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x],[y]分別表示不大于x,y的最大整數(shù),如[1.6]=1,[-0.3]=-1.則集合S={(x,y)|[x]2+[y]2≤1}表示的平面區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是甲、乙兩名籃球運(yùn)動員在以往幾場籃球賽中得分的莖葉圖,設(shè)甲、乙兩組數(shù)據(jù)的平均數(shù)分別為
.
x
.
x
,中位數(shù)分別為m,m,則( 。
A、
.
x
.
x
,m>m
B、
.
x
.
x
,m<m
C、
.
x
.
x
,m>m
D、
.
x
.
x
,m<m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
cos
x
4
,cos2
x
4
),
b
=(2sin
x
4
,2),設(shè)函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所對邊的長分別為a,b,c,且f(2B-
π
3
)=
3
+1,a=3,b=3
3
,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
2-x
log81x
x∈(-∞,1]
x∈(1,+∞)
,則滿足f(x)=
1
4
的x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

同時(shí)擲兩枚質(zhì)地均勻的骰子,則:
(I)向上的點(diǎn)數(shù)相同的概率為
 
;
(Ⅱ)向上的點(diǎn)數(shù)之和小于5的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列命題中正確的是( 。
A、m∥α,n∥α,則m∥n
B、m∥n,m∥α,則n∥α
C、m⊥α,m⊥β,則α∥β
D、α⊥γ,β⊥γ,則α∥β

查看答案和解析>>

同步練習(xí)冊答案