A={x||x2-2x|≤x},B={x||
x
1-x
|≤
x
1-x
},C={x|ax2+x+b<0},若(A∪B)∪C=R,(A∪B)∩C=∅,求a、b.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:求出A與B中不等式的解集確定出A與B,根據(jù)題意得到C為A與B并集的子集,求出C,即可確定出a與b的值.
解答: 解:A中不等式,當(dāng)x2-2x=x(x-2)≥0,即x≥2或x≤0時,變形得:x2-2x≤x,
解得:0≤x≤3,
此時x的范圍為2≤x≤3;
當(dāng)x2-2x=x(x-2)<0,即0<x<2時,變形得:-x2+2x≤x,
解得:x≤0或x≥1,
此時x的范圍為1≤x<2,
而當(dāng)x=0時,不等式成立,
綜上,A={0}∪[1,3];
由B中的不等式,得到
x
1-x
≥0,解得:0≤x<1,即B=[0,1),
∵(A∪B)∪C=R,(A∪B)∩C=∅,A∪B=[0,3],C={x|ax2+x+b<0},
∴C=∁R(A∪B)=(-∞,0)∪(3,+∞),
a<0
-
1
a
=3
b=0
,
解得:
a=-
1
3
b=0
點(diǎn)評:此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:||2x+1|-|2x-1||≤|﹙2x+1﹚-﹙2x-1﹚|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+2
3
sinxcosx+1.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間,最小正周期;
(Ⅱ)畫出f(x)的圖象.(要求:列表,要有超過一個周期的圖象,并標(biāo)注關(guān)鍵點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出由方程ax2-(a+1)x+a=0的解組成的集合中的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(an+1,1),
b
=(1,-an),
a
b
=2,設(shè)數(shù)列{an}的前n項和為Sn,且S4、S6、S9成等比數(shù)列.
(Ⅰ)求an與Sn
(Ⅱ)若bn=
Sn+156
an+1
,求數(shù)列{bn}中的最小項及取得最小項時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A、B、C的對邊為a、b、c,且2sinAsinC=sinAsinB+sinBsinC.
(Ⅰ)求角B的最大值;
(Ⅱ)設(shè)向量
a
=(
3
cos
B
2
+sin
B
2
,-1),
b
=(2cos
B
2
,
3
),求
a
b
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差d≠0,a1=1,且a1,a3,a9成等比數(shù)列.
(1)求數(shù)列{an}的公差d及通項an
(2)求數(shù)列{2an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若向量
OP
OA
OB
,且α+β=1,則A,B,P三點(diǎn)共線;
②若z•
.
z
+z+
.
z
=3,則復(fù)數(shù)z的對應(yīng)點(diǎn)Z的在復(fù)平面內(nèi)的軌跡是圓;
③設(shè)f(x)=f′(1)x2+2x,則f′(2)=-6;
④曲線y=x3+3x2-5過點(diǎn)M(1,-1)的切線只有一條;
⑤在一個二面角的兩個面內(nèi)部都和二面角的棱垂直的兩個向量分別為(0,-1,3),(2,2,4),則這個二面角的余弦值為
15
6
.其中正確命題的序號是
 
.(把你認(rèn)為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知直線l的極坐方程為ρsin(θ+
π
4
)=
2
+1,圓C的圓心(
2
,
π
4
),半徑為
2
,則直線l被圓C所截得的弦長是
 

查看答案和解析>>

同步練習(xí)冊答案