1.已知f(x)是定義在R上的偶函數(shù),且f(x)在(-∞,0]上單調(diào)遞減,則不等式f(lgx)>f(-2)的解集是( 。
A.($\frac{1}{100}$,100)B.(100,+∞)C.($\frac{1}{100}$,+∞)D.(0,$\frac{1}{100}$)∪(100,+∞)

分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化即可.

解答 解:∵f(x)是定義在R上偶函數(shù),且在區(qū)間(-∞,0]上是單調(diào)遞減,
∴在區(qū)間(0,+∞)上為增函數(shù),
則不等式f(lgx)>f(-2)等價(jià)為f(|lgx|)>f(2)
即|lgx|>2,
∴l(xiāng)gx<-2或lgx>2,
∴0<x<$\frac{1}{100}$或x>100,
故選D.

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求函數(shù)f(x)=2sin(x+$\frac{π}{6}$)-2cosx的最大值.并指出f(x)取得最大值時(shí)x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知集合A={x|-2≤x<5},B={x|3x-5≥x-1}.
(1)求A∩B;
(2)若集合C={x|-x+m>0},且A∪C=C,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知圓心在y軸上的圓C經(jīng)過(guò)點(diǎn)A(1,2)和點(diǎn)B(0,3).
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l在兩坐標(biāo)軸上的截距相等,且被圓C截得的弦長(zhǎng)為$\sqrt{2}$,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=sinx+cosx,x∈R.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過(guò)怎么的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,且該橢圓的短軸長(zhǎng)為2$\sqrt{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)F2的直線l與橢圓交于M、N兩點(diǎn),求△F1MN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖,根據(jù)如圖的框圖所打印出數(shù)列的第四項(xiàng)是870

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知A(4,6)、B(-3,-1)、C(5,-5)三點(diǎn),則經(jīng)過(guò)點(diǎn)A且與BC平行的直線l的點(diǎn)斜式方程為y-6=-$\frac{1}{2}$(x-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.函數(shù)f(x)=loga(x+1),(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)(-$\frac{3}{4}$,-2),圖象上有三個(gè)點(diǎn)A、B、C,它們的橫坐標(biāo)依次為t-1,t,t+1,(t≥1),記三角形ABC的面積為S(t),
(1)求f(x)的表達(dá)式;
(2)求S(1);
(3)是否存在正整數(shù)m,使得對(duì)于一切不小于1的t,都有S(t)<m,若存在求的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案