16.已知函數(shù)f(x)=sinx+cosx,x∈R.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過(guò)怎么的變換得到?

分析 (1)先利用輔助角公式對(duì)函數(shù)進(jìn)行整理,再結(jié)合函數(shù)y=Asin(ωx+φ)的周期公式及正弦函數(shù)的性質(zhì)即可得到結(jié)論.
(2)根據(jù)函數(shù)的圖象變換規(guī)律得出.

解答 解:(1)因?yàn)椋篺(x)=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)
所以:函數(shù)f(x)的最小正周期T=$\frac{2π}{1}$=2π,最大值為$\sqrt{2}$.
(2)將y=sinx的圖象向左平移$\frac{π}{4}$個(gè)單位得到y(tǒng)=sin(x+$\frac{π}{4}$)的函數(shù)圖象,
再將y=sin(x+$\frac{π}{4}$)的圖象上各點(diǎn)橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的$\sqrt{2}$,得到y(tǒng)=$\sqrt{2}$sin(x+$\frac{π}{4}$).

點(diǎn)評(píng) 本題主要考查函數(shù)的周期公式.函數(shù)y=Asin(ωx+φ)圖象的變換,考查了正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在三角形ABC中,acos(π-A)+bsin(${\frac{π}{2}$+B)=0,則三角形的形狀為等腰三角形或直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.一個(gè)幾何體的三視圖如圖所示,如果該幾何體的體積為12π,則該幾何體的側(cè)面積是(  )
A.B.12πC.16πD.48π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在三棱錐S-ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=$5\sqrt{5}$.(如圖所示)
(1)證明:平面SBC⊥平面SAC;
(2)求側(cè)面SBC與底面ABC所成二面角的大小;
(3)求三棱錐的體積VS-ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1),若$\overrightarrow{a}$⊥$\overrightarrow$,則x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知f(x)是定義在R上的偶函數(shù),且f(x)在(-∞,0]上單調(diào)遞減,則不等式f(lgx)>f(-2)的解集是(  )
A.($\frac{1}{100}$,100)B.(100,+∞)C.($\frac{1}{100}$,+∞)D.(0,$\frac{1}{100}$)∪(100,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求值:
(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-3-1+(-$\frac{7}{8}$)0;
(2)lg4+3lg5+lg$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(3,2),$\overrightarrow$=(-12,x-4),且$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)x=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x-klnx,(常數(shù)k>0).
(1)試確定函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)于任意x≥1,f(x)>0恒成立,試確定實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案