分析 (Ⅰ)根據(jù)橢圓的離心率公式e=$\frac{c}{a}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{1}{2}$,求得a和b的關(guān)系,由b=2$\sqrt{3}$,即可求得a的值,求得橢圓方程;
(Ⅱ)由題意可得,設(shè)直線方程,代入橢圓方程,求得M和N的縱坐標(biāo),根據(jù)三角形的面積公式,${S}_{△{F}_{1}MN}$=$\frac{1}{2}$丨F1F2丨(y1-y2)=y1-y2=$\frac{12\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,設(shè)$\sqrt{{m}^{2}+1}$=t≥1,則${S}_{△{F}_{1}MN}$=$\frac{12t}{3{t}^{2}+1}$=$\frac{12}{3t+\frac{1}{t}}$,根據(jù)函數(shù)的單調(diào)性即可求得△F1MN面積的最大值.
解答 解:(Ⅰ)橢圓:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e=$\frac{c}{a}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{1}{2}$,
∴a2=$\frac{4}{3}$b2,
由短軸長(zhǎng)為2$\sqrt{3}$,得b2=3,a2=4,
∴橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)設(shè)M、N點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),不妨設(shè)y1>0,y2<0,
設(shè)直線l的方程為x=my+1,
$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去x得(3m2+4)y2+6my-9=0,
解得y1=$\frac{-3m+6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,y2=$\frac{-3m-6\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,
依題意可知:${S}_{△{F}_{1}MN}$=$\frac{1}{2}$丨F1F2丨(y1-y2)=y1-y2=$\frac{12\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$,
不妨設(shè)$\sqrt{{m}^{2}+1}$=t≥1,于是${S}_{△{F}_{1}MN}$=$\frac{12t}{3{t}^{2}+1}$=$\frac{12}{3t+\frac{1}{t}}$,
∵y=3t+$\frac{1}{t}$在[1,+∞)上單調(diào)遞增,
∴${S}_{△{F}_{1}MN}$=$\frac{12t}{3{t}^{2}+1}$=$\frac{12}{3t+\frac{1}{t}}$≤$\frac{12}{4}$=3,
當(dāng)且僅當(dāng)t=1即m=0時(shí)取到,
∴當(dāng)m=0時(shí),△F1MN面積的取最大值,最大值為3.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì),考查直線與橢圓的位置關(guān)系,三角形面積公式的應(yīng)用及函數(shù)單調(diào)性,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{100}$,100) | B. | (100,+∞) | C. | ($\frac{1}{100}$,+∞) | D. | (0,$\frac{1}{100}$)∪(100,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x+3y+7=0 | B. | 3x-2y+2=0 | C. | 2x+3y+8=0 | D. | 3x-2y-12=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com